Abstract
Vehicular delay-tolerant networks follow a store–carry–forward mechanism to overcome the state of broken links between source and destination, which is crucial for autonomous vehicle networks. These networks depend upon the mobility of vehicular-relay nodes, which can adopt the store–carry–forward arrangement and provide consent to utilize their resources for packet forwarding. In reality, vehicular-relay nodes drop packets because of a lack of resources and selfish behavior, leading to potential failures in networks. The reason for this failure in performance is the absence of an efficient relay node selection strategy. Typically, vehicular delay networks can provide communication solutions in challenging conditions when other traditional networks fail to perform due to disconnection. However, if the routing strategy does not consider nodes’ selfish nature and relay nodes’ inefficiency, packet drops continue, and the approach will fail to perform. This paper proposes a routing strategy, known as the best-choice vehicular-relay selection strategy for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) transmission, to overcome this breakdown situation. The proposed strategy selects the best-performing vehicular-relay nodes and restricts the packet replication to low-performing vehicular nodes. The proposed routing strategy selects the best-choice relay nodes based on their past performance. Numerical analysis and our simulation results show that the proposed approach outperforms some of the leading routing strategies in its class by increasing the delivery probability, decreasing the overhead ratio, average latency, and the number of dropped packets in the vehicular network.
This is a preview of subscription content, access via your institution.












Availability of data and materials
Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.
References
Ahmed SH, Mu D, Kim D (2018) Improving bivious relay selection in vehicular delay tolerant networks. IEEE Trans Intell Transp Syst 19(3):987–995
Al Amiri W, Baza M, Banawan K, Mahmoud M, Alasmary W, Akkaya K (2019) Privacy-preserving smart parking system using blockchain and private information retrieval. In: 2019 International conference on smart applications, communications and networking (SmartNets). IEEE, pp 1–6
Al Amiri W, Baza M, Banawan K, Mahmoud M, Alasmary W, Akkaya K (2020) Towards secure smart parking system using blockchain technology. In: 2020 IEEE 17th annual consumer communications & networking conference (CCNC). IEEE, pp 1–2
Ali M, Qaisar S, Naeem M, Mumtaz S, Rodrigues JJ (2020) Combinatorial resource allocation in d2d assisted heterogeneous relay networks. Futur Gener Comput Syst 107:956–964
Baza M, Mahmoud M, Srivastava G, Alasmary W, Younis M (2020) A light blockchain-powered privacy-preserving organization scheme for ride sharing services. In: 2020 IEEE 91st vehicular technology conference (VTC2020-Spring). IEEE, pp 1–6
Cao Y, Sun Z (2013) Routing in delay/disruption tolerant networks: a taxonomy, survey and challenges. IEEE Commun Surv Tutor 15(2):654–677
Cheng L, Liu J, Xu G, Zhang Z, Wang H, Dai HN, Wu Y, Wang W (2019) Sctsc: a semicentralized traffic signal control mode with attribute-based blockchain in iovs. IEEE Trans Comput Soc Syst 6(6):1373–1385
Cheng CF, Srivastava G, Lin JCW, Lin YC (2021) Fault-tolerance mechanisms for software-defined internet of vehicles. IEEE Trans Intell Transp Syst
Cueva-Fernandez G, Espada JP, García-Díaz V, Gonzalez-Crespo R (2015) Fuzzy decision method to improve the information exchange in a vehicle sensor tracking system. Appl Soft Comput 35:708–716
Du Z, Wu C, Chen X, Wang X, Yoshinaga T, Ji Y (2020) A vdtn scheme with enhanced buffer management. Wirel Netw 2020:1–12
Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications. ACM, pp 27–34
Fall K, Farrell S (2008) Dtn: an architectural retrospective. IEEE J Sel Areas Commun 26(5):2008
Fall K, Scott KL, Burleigh SC, Torgerson L, Hooke AJ, Weiss HS, Durst RC, Cerf V(2007) Delay-tolerant networking architecture
Ferguson TS et al (1989) Who solved the secretary problem? Stat Sci 4(3):282–289
Feteiha MF, Hassanein HS, Kubbar O (2013) Opportunistic cooperation for infrastructure-to-relaying-vehicles over lte-a networks. In: 2013 IEEE international conference on communications (ICC). IEEE, pp 6376–6380
Fu Q, Zhang L, Feng W, Zheng Y (2011) Dawn: a density adaptive routing algorithm for vehicular delay tolerant sensor networks. In: 2011 49th annual allerton conference on communication, control, and computing (Allerton). IEEE, pp 1250–1257
Grasic S, Davies E, Lindgren A, Doria A(2011) The evolution of a dtn routing protocol-prophetv2. In: Proceedings of the 6th ACM workshop on challenged networks. ACM, pp 27–30
Hamza-Cherif A, Boussetta K, Diaz G, Lahfa F (2018) Performance evaluation and comparative study of main vdtn routing protocols under small-and large-scale scenarios. Ad Hoc Netw 81:122–142
Jain S, Fall K, Patra R (2004) Routing in a delay tolerant network, vol 34. ACM
Keränen A, Ott J, Kärkkäinen T (2009) The one simulator for dtn protocol evaluation. In: Proceedings of the 2nd international conference on simulation tools and techniques, p 55. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering)
Khabbaz MJ, Fawaz WF, Assi CM (2011) Probabilistic bundle relaying schemes in two-hop vehicular delay tolerant networks. IEEE Commun Lett 15(3):281–283
Lindgren A, Doria A, Schelen O (2004) Probabilistic routing in intermittently connected networks. In: Service assurance with partial and intermittent resources. Springer, pp 239–254
Liu P, Ding Y, Fu T (2019) Optimal throwboxes assignment for big data multicast in vdtns. Wirel Netw 2019:1–11
Meneguette RI, Boukerche A, Silva FA, Villas L, Ruiz LB, Loureiro AA (2018) A novel self-adaptive content delivery protocol for vehicular networks. Ad Hoc Netw 73:1–13
Misra S, Saha BK, Pal S (2016) Opportunistic mobile networks
Nasir MK, Shah SAA, Qureshi MA, Oche M, Noor RM (2014) Adapting geographical dtn routing for enhanced connectivity in partitioned vanets on highways. In: Region 10 symposium, 2014 IEEE. IEEE, pp 105–110
Oliveira R, Luís M, Sargento S (2019) On the performance of social-based and location-aware forwarding strategies in urban vehicular networks. Ad Hoc Netw 93:101925
Pereira PR, Casaca A, Rodrigues JJ, Soares VN, Triay J, Cervelló-Pastor C (2011) From delay-tolerant networks to vehicular delay-tolerant networks. IEEE Commun Surv Tutor 14(4):1166–1182
Qin H, Xiao X, Chen W, Li N, Zeng M, Cao B, Peng Y (2021) Utilizing vanets as supplementary communication infrastructure for delay-tolerant bulky data transportation. Ad Hoc Netw 112:102394
Rueckelt T, Stavrakakis I, Meuser T, Brahmi IH, Böhnstedt D, Steinmetz R (2019) Data transmission plan adaptation complementing strategic time-network selection for connected vehicles. Ad Hoc Netw 82:146–154
Singh AK, Pamula R. Vehicular delay tolerant network based communication using machine learning classifiers. Architectural Wireless Networks Solutions and Security Issues, p 195
Singh AK, Pamula R (2021) An efficient and intelligent routing strategy for vehicular delay tolerant networks. Wirel Netw 27(1):383–400
Spyropoulos T, Psounis K, Raghavendra CS (2008) Efficient routing in intermittently connected mobile networks: the multiple-copy case. IEEE/ACM Trans Netw 16(1):77–90
Spyropoulos T, Psounis K, Raghavendra CS (2005) Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking. ACM, pp 252–259
Vahdat A, Becker D et al (2000) Epidemic routing for partially connected ad hoc networks
Wang Y, Liu Y, Zhang J, Ye H, Tan Z (2016) Cooperative store-carry-forward scheme for intermittently connected vehicular networks. IEEE Trans Veh Technol 66(1):777–784
Wang H, Song L, Zhang G, Chen H (2018) Timetable-aware opportunistic dtn routing for vehicular communications in battlefield environments. Futur Gener Comput Syst 83:95–103
Wang J, Zhang H, Tang X, Li Z (2020) Delay-tolerant routing and message scheduling for cr-vanets. Futur Gener Comput Syst 110:291–309
Wu JMT, Wei M, Srivastava G, Chen CM, Lin JCW (2020) Mining large-scale high utility patterns in vehicular ad hoc network environments. Transactions on Emerging Telecommunications Technologies
Wu D, Zhu G, Zhao D (2013) Adaptive carry-store forward scheme in two-hop vehicular delay tolerant networks. IEEE Commun Lett 17(4):721–724
Xu X, He S, Han M, Parizi RM, Srivastava G (2020) Budget feasible roadside unit allocation mechanism in vehicular ad-hoc networks. In: 2020 IEEE 91st vehicular technology conference (VTC2020-Spring). IEEE, pp 1–5
Xu X, Shen B, Ding S, Srivastava G, Bilal M, Khosravi MR, Menon VG, Jan MA, Maoli W (2020) Service offloading with deep q-network for digital twinning empowered internet of vehicles in edge computing. IEEE Trans Ind Inform
Yin B, Wu Y, Hu T, Dong J, Jiang Z (2019) An efficient collaboration and incentive mechanism for internet of vehicles (iov) with secured information exchange based on blockchains. IEEE Internet Things J 7(3):1582–1593
Zhang F, Thiyagalingam J, Kirubarajan T, Xu S (2019) Speed-adaptive multi-copy routing for vehicular delay tolerant networks. Futur Gener Comput Syst 94:392–407
Acknowledgements
We thank the anonymous referees for their useful suggestions.
Funding
This work has no funding resource.
Author information
Authors and Affiliations
Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Amit Kumar Singh. The first draft of the manuscript was written by Amit Kumar Singh, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Communicated by Vicente Garcia Diaz.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Singh, A.K., Pamula, R., Jain, P.K. et al. An efficient vehicular-relay selection scheme for vehicular communication. Soft Comput 27, 3443–3459 (2023). https://doi.org/10.1007/s00500-021-06106-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-021-06106-4
Keywords
- Intelligent relay selection
- The best-choice problem
- Opportunistic network
- Vehicular networks
- Delay-tolerant networks