Skip to main content

A monarch butterfly optimization for an unequal area facility layout problem

Abstract

Unequal area facility layout problems deal with the placement of departments in a particular area. In these problems, unsettled rectangular-shaped blocks with an aspect ratio limitation are arranged in a given space. This has been widely studied for facility planning design and operating efficiency. Therefore, many metaheuristic approaches have been suggested to determine optimal solutions. In this study, monarch butterfly optimization, a recently developed algorithm, is presented to solve an unequal area facility layout problem. A slicing tree representation is used to form a layout structure as well as greedy acceptance, which accelerates the monarch butterfly optimization’s search performance. A set of well-known instances from existing studies is tested to evaluate the algorithm’s effectiveness. Meaningful results are obtained from various categories. The proposed algorithm generates solutions that match the best results from previous research, and it provides such solutions within a comparable amount of time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Data availability

Data sharing is not applicable to this article as no new data were created. Datasets are referred in this article.

Availability of data and material

Not applicable (datasets are referred).

References

  1. Abedinia O, Zareinejad M, Doranehgard MH, Fathi G, Ghadimi N (2019) Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. J Clean Prod 215:878–889. https://doi.org/10.1016/j.jclepro.2019.01.085

    Article  Google Scholar 

  2. Armour GC, Buffa ES (1963) A Heuristic algorithm and simulation approach to relative location of facilities. Manag Sci 9(2):294–309. https://doi.org/10.1287/mnsc.9.2.294

    Article  Google Scholar 

  3. Arora S, Singh S (2017) Node localization in wireless sensor networks using butterfly optimization algorithm. Arab J Sci Eng 42:3325–3335. https://doi.org/10.1007/s13369-017-2471-9

    Article  Google Scholar 

  4. Azadivar F, Wang J (2000) Facility layout optimization using simulation and genetic algorithms. Int J Prod Res 38(17):4369–4383. https://doi.org/10.1080/00207540050205154

    Article  MATH  Google Scholar 

  5. Bacanin N, Bezdan T, Tuba E, Srumberger I, Tuba M (2020) Monarch butterfly optimization based convolutional neural network design. Mathematics 8(6):936. https://doi.org/10.3390/math8060936

    Article  Google Scholar 

  6. Bazaraa MS (1975) Computerized layout design: A branch and bound approach. AIIE Trans 7(4):432–438. https://doi.org/10.1080/05695557508975028

    MathSciNet  Article  Google Scholar 

  7. Bozer YA, Meller RD (1997) A reexamination of the distance-based facility layout problem. IIE Trans 29(7):549–560. https://doi.org/10.1080/07408179708966365

    Article  Google Scholar 

  8. Bozer YA, Wang CT (2012) A graph-pair representation and MIP-model-based heuristic for the unequal-area facility layout problem. Eur J Oper Res 218(2):382–391. https://doi.org/10.1016/j.ejor.2011.10.052

    MathSciNet  Article  MATH  Google Scholar 

  9. Bukchin Y, Tzur M (2014) A new MILP approach for the facility process-layout design problem with rectangular and L/T shape departments. Int J Prod Res 52(24):7339–7359. https://doi.org/10.1080/00207543.2014.930534

    Article  Google Scholar 

  10. Castillo I, Westerlund J, Emet S, Westerlund T (2005) Optimization of block layout design problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput Chem Eng 30(1):54–69. https://doi.org/10.1016/j.compchemeng.2005.07.012

    Article  Google Scholar 

  11. Castillo I, Westerlund T (2005) An ε-accurate model for optimal unequal-area block layout design. Comput Oper Res 32(3):429–447. https://doi.org/10.1016/S0305-0548(03)00246-6

    Article  MATH  Google Scholar 

  12. Chae J, Regan AC (2016) Layout design problems with heterogeneous area constraints. Comput Ind Eng 102:198–207. https://doi.org/10.1016/j.cie.2016.10.016

    Article  Google Scholar 

  13. Chang M, Lin H (2012) A flexible bay structure representation and ant colony system for unequal area facility layout problems. In: World congress on engineering and computer science, vol III, pp 2–7

  14. Chen S, Chen R, Gao J (2017) A monarch butterfly optimization for the dynamic vehicle routing problem. Algorithms 10(3):107. https://doi.org/10.3390/a10030107

    MathSciNet  Article  MATH  Google Scholar 

  15. Chittratanawat S, Noble JS (1999) An integrated approach for facility layout, P/D location and material handling system design. Int J Prod Res 37(3):683–706. https://doi.org/10.1080/002075499191733

    Article  MATH  Google Scholar 

  16. Co H, Wu A, Reisman A (1989) A throughput-maximizing factory planning and layout model. Int J Prod Res 27(1):1–12

    Article  Google Scholar 

  17. Deechongkit S, Srinon R (2014) New mixed integer programming for facility layout design without loss of department area. Ind Eng Lett 4(8):21–28

    Google Scholar 

  18. Dorigo M, Di-Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol 2. IEEE, pp 1470–1477

  19. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Annu Rev Control 31(2):255–267. https://doi.org/10.1016/j.arcontrol.2007.04.001

    Article  Google Scholar 

  20. Dunker T, Radons G, Westkämper E (2003) A coevolutionary algorithm for a facility layout problem. Int J Prod Res 41(15):3479–3500. https://doi.org/10.1080/0020754031000118125

    Article  MATH  Google Scholar 

  21. Friedrich C, Klausnitzer A, Lasch R (2018) Integrated slicing tree approach for solving the facility layout problem with input and output locations based on contour distance. Eur J Oper Res 270(3):837–851. https://doi.org/10.1016/j.ejor.2018.01.001

    MathSciNet  Article  MATH  Google Scholar 

  22. Garcia-Hernandez L, Salas-Morera L, Garcia-Hernandez JA, Salcedo-Sanz S, Valente de Oliveira J (2019) Applying the coral reefs optimization algorithm for solving unequal area facility layout problems. Expert Syst Appl 138:112819. https://doi.org/10.1016/j.eswa.2019.07.036

    Article  Google Scholar 

  23. Ghanem WAHM, Jantan A (2018) Hybridizing artificial bee colony with monarch butterfly optimization for numerical optimization problems. Neural Comput Appl 30:163–181. https://doi.org/10.1007/s00521-016-2665-1

    Article  Google Scholar 

  24. Ghetas M, Yong CH, Sumari P (2016) Harmony-based monarch butterfly optimization algorithm. In: Proceedings—5th ieee international conference on control system, computing and engineering, ICCSCE 2015, pp 156–161. https://doi.org/10.1109/ICCSCE.2015.7482176

  25. Glover F (1989) Tabu search—part 1. ORSA J Comput 1(3):190–206. https://doi.org/10.1287/ijoc.1.3.190

    Article  MATH  Google Scholar 

  26. Gonçalves JF, Resende MGC (2015) A biased random-key genetic algorithm for the unequal area facility layout problem. Eur J Oper Res 246(1):86–107. https://doi.org/10.1016/j.ejor.2015.04.029

    MathSciNet  Article  MATH  Google Scholar 

  27. Hasda RK, Bhattacharjya RK, Bennis F (2017) Modified genetic algorithms for solving facility layout problems. Int J Interact Des Manuf (IJIDeM) 11(3):713–725. https://doi.org/10.1007/s12008-016-0362-z

    Article  Google Scholar 

  28. Heidari AA, Mirjalili S, Faris H, Aljarah I, Mafarja M, Chen H (2019) Harris hawks optimization: Algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  29. Hernández Gress ES, Mora-Vargas J, Herrera Del Canto LE, Díaz-Santillán E (2011) A genetic algorithm for optimal unequal-area block layout design. Int J Prod Res 49(8):2183–2195. https://doi.org/10.1080/00207540903130868

    Article  Google Scholar 

  30. Hosseini-Nasab H, Fereidouni S, Fatemi Ghomi SMT, Fakhrzad MB (2017) Classification of facility layout problems: a review study. Int J Adv Manuf Technol 94:957–977. https://doi.org/10.1007/s00170-017-0895-8

    Article  Google Scholar 

  31. Ingole S, Singh D (2017) Unequal-area, fixed-shape facility layout problems using the firefly algorithm. Eng Optim 49(7):1097–1115. https://doi.org/10.1080/0305215X.2016.1235327

    MathSciNet  Article  Google Scholar 

  32. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95—international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  33. Kang S, Chae J (2017) Harmony search for the layout design of an unequal area facility. Expert Syst Appl 79:269–281. https://doi.org/10.1016/j.eswa.2017.02.047

    Article  Google Scholar 

  34. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim 39(3):459–471. https://doi.org/10.1007/s10898-007-9149-x

    MathSciNet  Article  MATH  Google Scholar 

  35. Kaufman L, Broeckx F (1978) An algorithm for the quadratic assignment problem using Bender’s decomposition. Eur J Oper Res. https://doi.org/10.1016/0377-2217(78)90095-4

    Article  MATH  Google Scholar 

  36. Khodaei H, Hajiali M, Darvishan A, Sepehr M, Ghadimi N (2018) Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming. Appl Therm Eng 137:395–405. https://doi.org/10.1016/j.applthermaleng.2018.04.008

    Article  Google Scholar 

  37. Kim M, Chae J (2019) Monarch butterfly optimization for facility layout design based on a single loop material handling path. Mathematics 7(2):154. https://doi.org/10.3390/math7020154

    Article  Google Scholar 

  38. Kim JG, Kim YD (1998) A space partitioning method for facility layout problems with shape constraints. IIE Trans 30(10):947–957. https://doi.org/10.1080/07408179808966548

    Article  Google Scholar 

  39. Kochhar JS, Foster BT, Heragu SS (1998) HOPE: a genetic algorithm for the unequal area facility layout problem. Comput Oper Res 25(7–8):583–594. https://doi.org/10.1016/S0305-0548(97)00100-7

    Article  MATH  Google Scholar 

  40. Komarudin, Wong KY (2010) Applying ant system for solving unequal area facility layout problems. Eur J Oper Res 202(3):730–746. https://doi.org/10.1016/j.ejor.2009.06.016

  41. Konak A, Kulturel-Konak S, Norman BA, Smith AE (2006) A new mixed integer programming formulation for facility layout design using flexible bays. Oper Res Lett 34(6):660–672. https://doi.org/10.1016/j.orl.2005.09.009

    MathSciNet  Article  MATH  Google Scholar 

  42. Kulturel-Konak S (2012) A linear programming embedded probabilistic tabu search for the unequal-area facility layout problem with flexible bays. Eur J Oper Res 223(3):614–625. https://doi.org/10.1016/j.ejor.2012.07.019

    MathSciNet  Article  MATH  Google Scholar 

  43. Kulturel-Konak S, Konak A (2011a) A new relaxed flexible bay structure representation and particle swarm optimization for the unequal area facility layout problem. Eng Optim 43(12):1263–1287. https://doi.org/10.1080/0305215X.2010.548864

    MathSciNet  Article  Google Scholar 

  44. Kulturel-Konak S, Konak A (2011b) Unequal area flexible bay facility layout using ant colony optimisation. Int J Prod Res 49(7):1877–1902. https://doi.org/10.1080/00207541003614371

    Article  MATH  Google Scholar 

  45. Kulturel-Konak S, Konak A (2013) Linear programming based genetic algorithm for the unequal area facility layout problem. Int J Prod Res 51(14):4302–4324. https://doi.org/10.1080/00207543.2013.774481

    Article  MATH  Google Scholar 

  46. Lee YH, Lee MH (2002) A shape-based block layout approach to facility layout problems using hybrid genetic algorithm. Comput Ind Eng 42(2–4):237–248. https://doi.org/10.1016/S0360-8352(02)00018-9

    Article  Google Scholar 

  47. Li S, Chen H, Wang M, Heidari AA, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Futur Gener Comput Syst 111:300–323

    Article  Google Scholar 

  48. Liu Q, Meller RD (2007) A sequence-pair representation and MIP-model-based heuristic for the facility layout problem with rectangular departments. IIE Trans 39(4):377–394. https://doi.org/10.1080/07408170600844108

    Article  Google Scholar 

  49. McKendall AR, Hakobyan A (2010) Heuristics for the dynamic facility layout problem with unequal-area departments. Eur J Oper Res 201(1):171–182. https://doi.org/10.1016/j.ejor.2009.02.028

    Article  MATH  Google Scholar 

  50. Meller RD, Gau K-Y (1996) The facility layout problem: recent and emerging trends and perspectives. J Manuf Syst 15(5):351–366. https://doi.org/10.1016/0278-6125(96)84198-7

    Article  Google Scholar 

  51. Meller RD, Narayanan V, Vance PH (1998) Optimal facility layout design. Oper Res Lett 23(3–5):117–127. https://doi.org/10.1016/S0167-6377(98)00024-8

    MathSciNet  Article  MATH  Google Scholar 

  52. Mirjalili S (2015) Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249

    Article  Google Scholar 

  53. Molina D, Poyatos J, Del Ser J, García S, Hussain A, Herrera F (2020) Comprehensive taxonomies of nature-and bio-inspired optimization:inspiration versus algorithmic behavior, critical analysis recommendations. Cogn Comput 12(5):897–939. https://doi.org/10.1007/s12559-020-09730-8

  54. Montreuil B (1991) A modelling framework for integrating layout design and flow network design. Prog Mater Handl Logist 2:95–115. https://doi.org/10.1007/978-3-642-84356-3_8

    Article  Google Scholar 

  55. Nugent CE, Vollmann TE, Ruml J (1968) An experimental comparison of techniques for the assignment of facilities to locations. Oper Res 16(1):150–173. https://doi.org/10.1287/opre.16.1.150

    Article  Google Scholar 

  56. Paes FG, Pessoa AA, Vidal T (2017) A hybrid genetic algorithm with decomposition phases for the unequal area facility layout problem. Eur J Oper Res 256(3):742–756. https://doi.org/10.1016/j.ejor.2016.07.022

    MathSciNet  Article  MATH  Google Scholar 

  57. Palomo-Romero JM, Salas-Morera L, García-Hernández L (2017) An island model genetic algorithm for unequal area facility layout problems. Expert Syst Appl 68:151–162. https://doi.org/10.1016/j.eswa.2016.10.004

    Article  Google Scholar 

  58. Peters BA, Yang T (1997) Integrated facility layout and material handling system design in semiconductor fabrication facilities. IEEE Trans Semicond Manuf 10(3):360–369. https://doi.org/10.1109/66.618209

    Article  Google Scholar 

  59. Ripon KSN, Glette K, Khan KN, Hovin M, Torresen J (2013) Adaptive variable neighborhood search for solving multi-objective facility layout problems with unequal area facilities. Swarm Evol Comput 8:1–12. https://doi.org/10.1016/j.swevo.2012.07.003

    Article  Google Scholar 

  60. Saeedi M, Moradi M, Hosseini M et al (2019) Robust optimization based optimal chiller loading under cooling demand uncertainty. Appl Therm Eng 148:1081–1091. https://doi.org/10.1016/j.applthermaleng.2018.11.122

    Article  Google Scholar 

  61. Scholz D, Jaehn F, Junker A (2010) Extensions to STaTS for practical applications of the facility layout problem. Eur J Oper Res 204(3):463–472. https://doi.org/10.1016/j.ejor.2009.11.012

    Article  MATH  Google Scholar 

  62. Scholz D, Petrick A, Domschke W (2009) STaTS: a slicing tree and Tabu search based heuristic for the unequal area facility layout problem. Eur J Oper Res 197(1):166–178. https://doi.org/10.1016/j.ejor.2008.06.028

    MathSciNet  Article  MATH  Google Scholar 

  63. Sherali HD, Fraticelli BMP, Meller RD (2003) Enhanced model formulations for optimal facility layout. Oper Res 51(4):629–644. https://doi.org/10.1287/opre.51.4.629.16096

    MathSciNet  Article  MATH  Google Scholar 

  64. Sikaroudi AME, Shahanaghi K (2016) Facility layout by collision detection and force exertion heuristics. J Manuf Syst 41:21–30. https://doi.org/10.1016/j.jmsy.2016.07.001

    Article  Google Scholar 

  65. Singh SP, Sharma RRK (2006) A review of different approaches to the facility layout problems. Int J Adv Manuf Technol 30:425–433. https://doi.org/10.1007/s00170-005-0087-9

    Article  Google Scholar 

  66. Strumberger I, Šarac M, Marković D, Bacanin N (2018) Hybridized monarch butterfly algorithm for global optimization problems. Int J Comput 3:63–68

    Google Scholar 

  67. Strumberger I, Tuba E, Bacanin N, Beko N, Tuba M (2020) Modified and hybridized monarch butterfly algorithms for multi-objective optimization. In: Hybrid intelligent systems. Springer, Berlin, pp 449–458

  68. Tam KY (1992a) A simulated annealing algorithm for allocating space to manufacturing cells. Int J Prod Res 30(1):63–87. https://doi.org/10.1080/00207549208942878

    Article  MATH  Google Scholar 

  69. Tam KY (1992b) Genetic algorithms, function optimization, and facility layout design. Eur J Oper Res 63(2):322–346. https://doi.org/10.1016/0377-2217(92)90034-7

    Article  MATH  Google Scholar 

  70. Tate DM, Smith AE (1995) Unequal-area facility layout by genetic search. IIE Trans 27(4):465–472. https://doi.org/10.1080/07408179508936763

    Article  Google Scholar 

  71. Ulutas B (2012) A modified flexible bay and slicing structure for unequal area facilities. In: IFAC proceedings volumes (IFAC-PapersOnline), vol 14. IFAC. https://doi.org/10.3182/20120523-3-RO-2023.00362

  72. Ulutas BH, Kulturel-Konak S (2012) An artificial immune system based algorithm to solve unequal area facility layout problem. Expert Syst Appl 39(5):5384–5395. https://doi.org/10.1016/j.eswa.2011.11.046

    Article  Google Scholar 

  73. Ulutas BH, Kulturel-Konak S (2013) Assessing hypermutation operators of a clonal selection algorithm for the unequal area facility layout problem. Eng Optim 45(3):375–395. https://doi.org/10.1080/0305215X.2012.678492

    Article  Google Scholar 

  74. van Camp DJ, Carter MW, Vannelli A (1992) A nonlinear optimization approach for solving facility layout problems. Eur J Oper Res 57(2):174–189. https://doi.org/10.1016/0377-2217(92)90041-7

    Article  MATH  Google Scholar 

  75. Wang GG (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memetic Comput 10:151–164. https://doi.org/10.1007/s12293-016-0212-3

    Article  Google Scholar 

  76. Wang GG, Deb S, Zhao X, Cui Z (2018a) A new monarch butterfly optimization with an improved crossover operator. Oper Res Int J 18:731–755. https://doi.org/10.1007/s12351-016-0251-z

    Article  Google Scholar 

  77. Wang GG, Deb S, Coelho LDS (2018b) Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems. Int J Bio-Inspired Comput 12(1):1–22

    Article  Google Scholar 

  78. Wang GG, Deb S, Coelho LdS (2015) Elephant herding optimization. In: 2015 3rd international symposium on computational and business intelligence (ISCBI), pp 1–5. https://doi.org/10.1109/ISCBI.2015.8.

  79. Wang GG, Hao GS, Cheng S, Qin Q (2016) A discrete monarch butterfly optimization for Chinese TSP problem. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), LNCS, vol 9712, pp 165–173. https://doi.org/10.1007/978-3-319-41000-5_16

  80. Wang MJ, Hu MH, Ku MY (2005) A solution to the unequal area facilities layout problem by genetic algorithm. Comput Ind 56(2):207–220. https://doi.org/10.1016/j.compind.2004.06.003

    Article  Google Scholar 

  81. Wong KY, Komarudin (2010) Solving facility layout problems using flexible bay structure representation and ant system algorithm. Expert Syst Appl 37(7):5523–5527. https://doi.org/10.1016/j.eswa.2009.12.080

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

M. Kim and J. Chae were involved in conception and design of study; M. Kim and J. Chae were involved in resources and acquisition of data; M. Kim was involved in methodology and software; M. Kim and J. Chae were involved in analysis and interpretation of data; M. Kim was involved in writing original draft presentation; J. Chae was involved in revising the manuscript critically for important intellectual content; M. Kim was involved in visualization; J. Chae was involved in supervision and project administration.

Corresponding author

Correspondence to Junjae Chae.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Chae, J. A monarch butterfly optimization for an unequal area facility layout problem. Soft Comput 25, 14933–14953 (2021). https://doi.org/10.1007/s00500-021-06076-7

Download citation

Keywords

  • Unequal area facility layout problem
  • Monarch butterfly optimization
  • Slicing tree representation
  • Facility layout design