Skip to main content

A hybrid parallel Harris hawks optimization algorithm for reusable launch vehicle reentry trajectory optimization with no-fly zones

A Correction to this article was published on 16 October 2021

This article has been updated

Abstract

Reentry trajectory optimization is a critical optimal control problem for reusable launch vehicle (RLV) with highly nonlinear dynamic characteristics and complex constraints. In this paper, a hybrid parallel Harris hawks optimization (HPHHO) algorithm is proposed to address the problem. HPHHO aims to enhance the performance of existing Harris hawks optimization (HHO) algorithm by three strategies including oppositional learning, smoothing technique and parallel optimization mechanism. At the beginning of each iteration, the opposite population is calculated from the current population by the oppositional learning strategy. Following that, the individuals in the two populations are arranged in ascending order on the basis of the fitness function values, and the top half of the resulting population is selected as the initial population. The selected initial population is divided into two equal subpopulations which are assigned to the differential evolution and the HHO algorithm, respectively. The both algorithms operate in parallel to search and update the solutions of each subpopulation simultaneously. Then the solutions are smoothed for each iteration by the smoothing technique to reduce fluctuations. As a result, the optimal solution obtained by the parallel optimization mechanism avoids falling into local optima. The performance of HPHHO is evaluated by 4 CEC 2005 benchmark functions and 3 constrained continuous optimal control problems, showing better efficiency and robustness in terms of performance metrics, convergence rate and stability. Finally, the simulation results show that the proposed algorithm is very effective, practical and feasible in solving the RLV reentry trajectory optimization problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Change history

References

  1. Abd M, Mirjalili S (2019) A hyper-heuristic for improving the initial population of whale optimization algorithm. Knowledge-Based Syst 172:42–63. https://doi.org/10.1016/j.knosys.2019.02.010

    Article  Google Scholar 

  2. Alabool HM, Alarabiat D, Abualigah L et al (2021) Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Comput Appl. https://doi.org/10.1007/s00521-021-05720-5

    Article  Google Scholar 

  3. Bansal P, Kumar S, Pasrija S et al (2020) A hybrid grasshopper and new cat swarm optimization algorithm for feature selection and optimization of multi-layer perceptron. Soft Comput 24:15463–15489. https://doi.org/10.1007/s00500-020-04877-w

    Article  Google Scholar 

  4. Bao XL, Jia HM, Lang CB (2019) A novel hybrid Harris hawks optimization for color image multilevel thresholding segmentation. IEEE Access 7:76529–76546. https://doi.org/10.1109/ACCESS.2019.2921545

    Article  Google Scholar 

  5. Betts JT (2009) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. SIAM Press, Philadelphia

    MATH  Google Scholar 

  6. Chai R, Savvaris A, Tsourdos A (2017a) Violation learning differential evolution-based hp-adaptive pseudospectral method for trajectory optimization of space maneuver vehicle. IEEE Trans Aerosp Electron Syst 53:2031–2044. https://doi.org/10.1109/taes.2017.2680698

    Article  Google Scholar 

  7. Chai R, Savvaris A, Tsourdos A et al (2017b) Multi-objective trajectory optimization of space manoeuvre vehicle using adaptive differential evolution and modified game theory. Acta Astronaut 136:273–280. https://doi.org/10.1016/j.actaastro.2017.02.023

    Article  Google Scholar 

  8. Chai R, Savvaris A, Tsourdos A et al (2018) Unified multiobjective optimization scheme for aeroassisted vehicle trajectory planning. J Guid Control Dyn 41:1521–1530. https://doi.org/10.2514/1.G003189

    Article  Google Scholar 

  9. Chai R, Savvaris A, Tsourdos A et al (2020) Solving multiobjective constrained trajectory optimization problem by an extended evolutionary algorithm. IEEE Trans Cybern 50:1630–1643. https://doi.org/10.1109/TCYB.2018.2881190

    Article  Google Scholar 

  10. Derrac J, García S, Molina D et al (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1:3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  11. Coelho L dos S, Mariani VC (2008) Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization. Expert Syst Appl 34:1905–1913. https://doi.org/10.1016/j.eswa.2007.02.002

    Article  Google Scholar 

  12. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science. pp. 39–43. https://doi.org/10.1109/MHS.1995.494215

  13. Floudas CA, Pardalos PM, Adjiman C (1999) Handbook of test problems in local and global optimization. Kluwer Academic Publishers

    Book  Google Scholar 

  14. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive survey: whale optimization algorithm and its applications. Swarm Evol Comput 48:1–24. https://doi.org/10.1016/j.swevo.2019.03.004

    Article  Google Scholar 

  15. Graichen K, Petit N (2008) Constructive methods for initialization and handling mixed state-input constraints in optimal control. J Guid Control Dyn 31:1334–1343. https://doi.org/10.2514/1.33870

    Article  Google Scholar 

  16. Hashemi H, Mirjalili S (2018) A parallel numerical method for solving optimal control problems based on whale optimization algorithm. Knowledge-Based Syst 151:114–123. https://doi.org/10.1016/j.knosys.2018.03.024

    Article  Google Scholar 

  17. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20:89–99. https://doi.org/10.1016/j.engappai.2006.03.003

    Article  Google Scholar 

  18. Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028

    Article  Google Scholar 

  19. Jadon SS, Tiwari R, Sharma H et al (2017) Hybrid artificial bee colony algorithm with differential evolution. Appl Soft Comput 58:11–24. https://doi.org/10.1016/j.asoc.2017.04.018

    Article  Google Scholar 

  20. Jain M, Singh V, Rani A (2019) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evol Comput 44:148–175. https://doi.org/10.1016/j.swevo.2018.02.013

    Article  Google Scholar 

  21. Jee G, Sharma KK, Rao KK et al (2014) Evolution of attitude control law of an Indian re-entry launch vehicle. Int J Adv Eng Sci Appl Math 6:148–157

    Article  Google Scholar 

  22. Kang YL, Cheng L, Zhang QZ et al (2015) Data-driven RLV multi-objective reentry trajectory optimization based on new QABC algorithm. Int J Adv Manuf Technol 84:453–471. https://doi.org/10.1007/s00170-015-8124-9

    Article  Google Scholar 

  23. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    MathSciNet  Article  MATH  Google Scholar 

  24. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    MathSciNet  Article  Google Scholar 

  25. Li ZH, Hu C, Ding CB et al (2018) Stochastic gradient particle swarm optimization based entry trajectory rapid planning for hypersonic glide vehicles. Aerosp Sci Technol 76:176–186. https://doi.org/10.1016/j.ast.2018.01.033

    Article  Google Scholar 

  26. Liang W, Kun W, Wang Z et al (2019) Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing 341:41–59. https://doi.org/10.1016/j.neucom.2019.02.054

    Article  Google Scholar 

  27. Mafarja MM, Mirjalili S (2017) Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing 260:302–312. https://doi.org/10.1016/j.neucom.2017.04.053

    Article  Google Scholar 

  28. Mahdavi S, Rahnamayan S, Deb K (2018) Opposition based learning: a literature review. Swarm Evol Comput 39:1–23. https://doi.org/10.1016/j.swevo.2017.09.010

    Article  Google Scholar 

  29. Mao Q, Dou L, Zong Q et al (2018) Attitude controller design for reusable launch vehicles during reentry phase via compound adaptive fuzzy H-infinity control. Aerosp Sci Technol 72:36–48. https://doi.org/10.1016/j.ast.2017.10.012

    Article  Google Scholar 

  30. Mernik M, Liu S, Karaboga D et al (2015) On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf Sci 291:115–127. https://doi.org/10.1016/j.ins.2014.08.040

    MathSciNet  Article  MATH  Google Scholar 

  31. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  32. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  33. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27:495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  34. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  35. Mustafi D, Sahoo G (2019) A hybrid approach using genetic algorithm and the differential evolution heuristic for enhanced initialization of the k-means algorithm with applications in text clustering. Soft Comput 23:6361–6378. https://doi.org/10.1007/s00500-018-3289-4

    Article  Google Scholar 

  36. Nenavath H, Jatoth RK (2018) Hybridizing sine cosine algorithm with differential evolution for global optimization and object tracking. Appl Soft Comput 62:1019–1043. https://doi.org/10.1016/j.asoc.2017.09.039

    Article  Google Scholar 

  37. Pontani M, Conway BA (2010) Particle swarm optimization applied to space trajectories. J Guid Control Dyn 33:1429–1441. https://doi.org/10.2514/1.48475

    Article  Google Scholar 

  38. Rao AV, Benson DA, Darby C et al (2010) Algorithm 902: GPOPS, a matlab software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Trans Math Softw 37:1–39. https://doi.org/10.1145/1731022.1731032

    Article  MATH  Google Scholar 

  39. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179:2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  40. Ridha HM, Heidari AA, Wang M et al (2020) Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers Manag 209:112660. https://doi.org/10.1016/j.enconman.2020.112660

    Article  Google Scholar 

  41. Saha A, Bhattacharya A, Das P et al (2020) HSOS: a novel hybrid algorithm for solving the transient-stability-constrained OPF problem. Soft Comput 24:7481–7510. https://doi.org/10.1007/s00500-019-04374-9

    Article  Google Scholar 

  42. Storn R, Price K (1997) Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359. https://doi.org/10.1023/A:1008202821328

    MathSciNet  Article  MATH  Google Scholar 

  43. Su ZK, Wang HL (2015) A novel robust hybrid gravitational search algorithm for reusable launch vehicle approach and landing trajectory optimization. Neurocomputing 162:116–127. https://doi.org/10.1016/j.neucom.2015.03.063

    Article  Google Scholar 

  44. Sun GJ, Lan YF, Zhao RQ (2019) Differential evolution with gaussian mutation and dynamic parameter adjustment. Soft Comput 23:1615–1642. https://doi.org/10.1007/s00500-017-2885-z

    Article  Google Scholar 

  45. Turgut MS, Sağban HM, Turgut OE et al (2021) Whale optimization and sine–cosine optimization algorithms with cellular topology for parameter identification of chaotic systems and Schottky barrier diode models. Soft Comput 25:1365–1409. https://doi.org/10.1007/s00500-020-05227-6

    Article  Google Scholar 

  46. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  47. Wu J, Wang H, Li N et al (2018) Path planning for solar-powered UAV in urban environment. Neurocomputing 275:2055–2065. https://doi.org/10.1016/j.neucom.2017.10.037

    Article  Google Scholar 

  48. Zhang DN, Liu Y (2011) RLV reentry trajectory optimization through hybridization of an improved GA and a SQP algorithm. In: AIAA Guidance, Navigation, and Control Conference. https://doi.org/10.2514/6.2011-6658

  49. Zhang HP, Wang HL, Li N et al (2020) Time-optimal memetic whale optimization algorithm for hypersonic vehicle reentry trajectory optimization with no-fly zones. Neural Comput Appl 32:2735–2749. https://doi.org/10.1007/s00521-018-3764-y

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article has been updated: Due to textual changes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Dai, Y. & Liu, Y. A hybrid parallel Harris hawks optimization algorithm for reusable launch vehicle reentry trajectory optimization with no-fly zones. Soft Comput 25, 14597–14617 (2021). https://doi.org/10.1007/s00500-021-06039-y

Download citation

Keywords

  • Hybrid parallel Harris hawks optimization
  • Oppositional learning
  • Smoothing technique
  • Parallel optimization mechanism
  • Reentry trajectory optimization