Skip to main content
Log in

Supplier’s cooperation strategy with two competing manufacturers under wholesale price discount contract considering technology investment

  • Soft computing in decision making and in modeling in economics
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Cooperation between upstream suppliers and downstream manufacturers in technology investment is a popular way to improve production technology for reducing suppliers’ production costs of key components. The suppliers’ cooperation strategies are mainly influenced by manufacturers’ technology investments and wholesale price discount contracts provided by suppliers. This paper explores whether a supplier should cooperate with two downstream competing manufacturers to accept their technology investments to reduce the supplier’s production cost of a key component. Specifically, we consider the following three cooperation strategies: The supplier does not accept manufacturers’ technology investments, only accepts one manufacturer’s technology investment and accepts both manufacturers’ technology investments. Our results demonstrate that the wholesale price discount contract and the technology investment can enhance the profits of the supplier and two manufacturers when the discount degree is low. Further, we conclude that when the discount degree is relatively low or when both the discount degree and the technology investment efficiency are relatively high, the supplier’s optimal cooperation strategy with two manufacturers is to accept both manufacturers’ technology investments and both manufacturers are also willing to invest simultaneously. At last, we extend the model to the asymmetric potential market size and show that our theoretical results are robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. https://www.163.com/tech/article/CV643CJS00097U7T.html.

  2. https://www.163.com/money/article/CI7IP2KJ002580S6.html.

References

  • Agrawal A, Kim Y, Kwon H, Muthulingam S (2016) Investment in shared suppliers: effect of learning, spillover, and competition. Prod Oper Manag 25(4):736–750

    Article  Google Scholar 

  • Amir R, Evstigneev I, Wooders JW (2003) Noncooperative versus cooperative R&D with endogenous spillover rates. Games Econ Behav 42(2):184–207

    Article  MATH  Google Scholar 

  • Bernstein F, Federgruen A (2005) Decentralized supply chains with competing retailers under demand uncertainty. Manage Sci 51(1):18–29

    Article  MATH  Google Scholar 

  • Cai G, Zhang ZG, Zhang M (2009) Game theoretical perspectives on dual-channel supply chain competition with price discounts and pricing schemes. Int J Prod Econ 117(1):80–96

    Article  Google Scholar 

  • Chen R, Roma P (2011) Group buying of competing retailers. Prod Oper Manag 20(2):181–197

    Article  Google Scholar 

  • Choi S (1996) Price competition in a duopoly common retailer channel. J Retail 72(2):117–134

    Article  Google Scholar 

  • Dignan L (2012) Supply chain wars: Hon Hais Sharp investment helps Apple vs. Samsung. ZDNet. Available at http://www.zdnet.com/blog/btl/supply-chain-wars-hon-hais-sharpinvestment-helps-apple-vs-samsung/72577. Accessed date May 20, 2012

  • Dolan RJ (1987) Quantity discounts: managerial issues and research opportunities. Market Sci 6(1):1–22

    Article  Google Scholar 

  • Dong BW, Tang WS, Zhou C, Ren YF (2021) Is dual sourcing a better choice? The impact of reliability improvement and contract manufacturer encroachment. Transp Res Part E https://doi.org/10.1016/j.tre.2021.102275

  • Ge Z, Hu Q, Xia Y (2014) Firms’ R&D cooperation behavior in a supply chain. Prod Oper Manag 23(4):599–609

  • Gilbert SM, Xia Y, Yu G (2006) Strategic outsourcing for competing OEMs that face cost reduction opportunities. IIE Trans 38(11):903–915

    Article  Google Scholar 

  • Ha AY, Tian Q, Tong S (2017) Information sharing in competing supply chains with production cost reduction. Manuf Serv Oper Manag 19(2):246–262

    Article  Google Scholar 

  • Huang YS, Ho JW, Jian HJ, Tseng TL (2021) Quantity discount coordination for supply chains with deteriorating inventory. Comput Ind Eng. https://doi.org/10.1016/j.cie.2020.106987

  • Jin Y, Hu Q, Kim SW, Zhou SX (2019) Supplier development and integration in competitive supply chains. Prod Oper Manag 28(5):1256–1271

    Article  Google Scholar 

  • Kamien M, Muller E, Zang I (1992) Research joint ventures and R&D cartels. Am Econ Rev 82(5):1293–1306

    Google Scholar 

  • Li CF, Chu MS, Zhou C, Zhao LX (2020) Two-period discount pricing strategies for an e-commerce platform with strategic consumers. Comput Ind Eng. https://doi.org/10.1016/j.cie.2020.106640

  • Li L, Wang Y, Dai W (2016) Coordinating supplier retailer and carrier with price discount policy. Appl Math Model 40(1):646–657

    Article  MathSciNet  MATH  Google Scholar 

  • Li Q, Li B, Chen P, Hou P (2017) Dual-channel supply chain decisions under asymmetric information with a risk-averse retailer. Ann Oper Res 257(12):423–447

    Article  MathSciNet  MATH  Google Scholar 

  • Li SJ, Shang Y, Jia DF (2020) Bundling strategy of complementary products under competitive–competitive market structure. J Syst Eng 35(6):748–759

    MATH  Google Scholar 

  • Li ZD, Zhang HY (2021) Game analysis of new product promotion and improvement between manufacturer and retailer. J Syst Eng 36(2):228–241

    Google Scholar 

  • Liang X, Liang LH (2021) Pricing strategy of hybrid channel supply chain with online retailers dual-channel retail strategy. J Syst Eng 36(1):30–44

    MATH  Google Scholar 

  • Liu Z, Wang J (2019) Supply chain network equilibrium with strategic supplier investment: a real options perspective. Int J Prod Econ 208:184–198

    Article  Google Scholar 

  • Ma L, Zhang R, Guo S, Liu B (2012) Pricing decisions and strategies selection of dominant manufacturer in dual-channel supply chain. Econ Model 29(6):2558–2565

    Article  Google Scholar 

  • Mcguire T, Staelin R (2008) An industry equilibrium analysis of downstream vertical integration. Market Sci 27(1):115–130

    Article  Google Scholar 

  • Porter ME (1998) Competitive advantage: creating and sustaining superior performance. FreePress, New York

    Book  Google Scholar 

  • Qi A, Ahn HS, Sinha A (2015) Investing in a shared supplier in a competitive market: stochastic capacity case. Prod Oper Manag 24(10):1537–1551

    Article  Google Scholar 

  • Roshanak M, Joseph G (2018) The newsvendor problem with capacitated suppliers and quantity discounts. Eur J Oper Res 271(1):109–119

    Article  MathSciNet  MATH  Google Scholar 

  • Seitz P (2017) Apple considering LG display investment for OLED IPhone screens. Investor’s Business Daily July 3, 2017

  • Shavandi H, Khaki SV, Khedmati M (2015) Parallel importation and price competition in a duopoly supply chain. Int J Prod Res 53(10):3104–3119

    Article  Google Scholar 

  • Shin H, Benton WC (2007) A quantity discount approach to supply chain coordination. Eur J Oper Res 180(2):601–616

    Article  MATH  Google Scholar 

  • Sun XJ, Tang WS, Chen J, Zhang JX (2019) Manufacturer encroachment with production cost reduction under asymmetric information. Transp Res Part E 128:191–211

    Article  Google Scholar 

  • Wang S, Hu Q, Liu W (2017) Price and quality-based competition and channel structure with consumer loyalty. Eur J Oper Res 262(2):563–574

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Xiao Y, Yang N (2014) Improving reliability of a shared supplier with competition and spillovers. Eur J Oper Res 236(2):499–510

    Article  MathSciNet  MATH  Google Scholar 

  • Xu GN, Chen HR, Wu XL, Zhou C (2020) Game analysis on green cost-sharing between competing supply chains. J Syst Eng 35(02):244–256

    MATH  Google Scholar 

  • Yan Y, Zhao R, Lan Y (2017) Asymmetric retailers with different moving sequences: group buying vs. individual purchasing. Eur J Oper Res 261:903–917

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang XX, Chen T, Shen CL (2020) Green investment choice in a duopoly market with quality competition. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124032

  • Zhang Y, Gao JW, Li X, Yang XF (2021) Two-person cooperative uncertain differential game with transferable payoffs. Fuzzy Optim Decis Mak. https://doi.org/10.1007/s10700-021-09355-y

  • Zhou YW (2007) A comparison of different quantity discount pricing policies in a two-echelon channel with stochastic and asymmetric demand information. Eur J Oper Res 181(2):686–703

    Article  MATH  Google Scholar 

  • Zhou XJ, Yang SX, Wang GL (2020) Impacts of knowledge spillovers and cartelization on cooperative innovation decisions with uncertain technology efficiency. Comput Ind Eng. https://doi.org/10.1016/j.cie.2020.106395

Download references

Acknowledgements

The study of Yang was funded by Yanta Scholars Foundation of Xi’an University of Finance and Economics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, model design and analysis were performed by Shanxue Yang and Hongwei Liu. The first draft of the manuscript was written by Shanxue Yang. Software implementation of the model was by Guoli Wang and Yifei Hao. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Guoli Wang or Yifei Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Lemma 1

For any given w, we derive \(\pi _{M_i}^{\mathrm{NN}}\) is concave in \(p_i\) since \(\frac{d^{2}\pi ^{\mathrm{NN}}_{M_i} }{d p_i^{2}}=-2<0 \). By the first-order condition, that is \(\frac{d \pi _{M_1}^{\mathrm{NN}}}{d p_1}=0\) and \(\frac{d \pi _{M_2}^{\mathrm{NN}}}{d p_2}=0\), we conclude the unique optimal retail price (3).

By substituting (3) in the supplier’s profit function, we get \(\pi _{S}^{\mathrm{NN}}(w)\). In order to make \(\pi _{S}^{\mathrm{NN}}(w)\) to be concave in w, we require that \(\frac{d^{2} \pi _{S}^{\mathrm{NN}}}{d w^{2}}=\frac{-4(b-1)}{b-2}<0\). From the first order condition, \(\frac{d \pi _{S}^{\mathrm{NN}}}{d w}=0\), we obtain the unique optimal wholesale price (6). Then substituting Eq. (6) in Eq. (3), we get the optimal retail price (5).

Substituting Eqs. (5) and (6) in Eqs. (2) and (4), we can derive the optimal profit of the manufacturers (7) and the supplier’s optimal profit (8). \(\square \)

Proof of Lemma 2

For the given w, it is easy to show that \(\pi _{M_1}^{\mathrm{TN}}\) is jointly concave in \(p_1\) and \(t_1\), because the Hessian matrix of \(\pi _{M_1}^{\mathrm{TN}}\)

$$\begin{aligned} H(\pi _{M_{1}}^{\mathrm{TN}})=\begin{pmatrix} \frac{\partial ^2 \pi _{M_{1}}^{TN}}{\partial p_{1}^2} &{} \frac{\partial ^2 \pi _{M_{1}}^{TN}}{\partial p_{1}\partial t_1} \\ \frac{\partial ^2 \pi _{M_{1}}^{TN}}{\partial t_1 \partial p_1} &{} \frac{\partial ^2 \pi _{M_{1}}^{TN}}{\partial t_{1}^2} \end{pmatrix}\\ =\begin{pmatrix} -2 &{}\alpha \\ -\alpha &{} -\mu \end{pmatrix} \end{aligned}$$

is negative definite when the leading principal minor \(H_{1}^{\mathrm{TN}}=-2<0\), \(H_2^{\mathrm{TN}}=2\mu -\alpha ^2>0\). Further, we conclude that \(\pi _{M_2}^{\mathrm{TN}}\) is concave in \(p_2\) when \(\frac{d^{2} \pi ^{\mathrm{TN}}_{M_2}}{d p_2^{2}}=-2<0\).

When \(\mu >\frac{\alpha ^2}{2}\), by the first order condition, that is \(\frac{\partial \pi _{M_1}^{\mathrm{TN}}}{\partial p_1}=0,\) \(\frac{\partial \pi _{M_1}^{\mathrm{TN}}}{\partial t_1}=0,\) and \(\frac{d \pi _{M_2}^{\mathrm{TN}}}{d p_2}=0,\) we can conclude (11), (12) and (13). By substituting Eqs. (11), (12) and (13) in the supplier’s profit (14), we obtain \(\pi _{S}^{\mathrm{TN}}(w)\). To ensure that \(\pi _{S}^{\mathrm{TN}}(w)\) is concave in w, \(\frac{d^{2} \pi _{S}^{\mathrm{TN}}}{d w^{2}}<0\) is required, that is \(\mu >\mu _{u}^{\mathrm{TN}}={\frac{ \left( b-1 \right) \left( b+2 \right) \alpha + \left( b-2 \right) \left( b+1 \right) {\alpha }^{2}-\alpha \,\sqrt{(\alpha ^2(b^2-b-2)-b^2-b+2)(1-b)(b+2)}}{2\left( b-2 \right) \left( b+2 \right) }}\). From \(\frac{d \pi _{S}^{\mathrm{TN}}}{d w}=0,\) we can obtain the unique optimal wholesale price (18). Then substituting Eq. (18) in Eqs. (11), (12) and (13), we have the optimal retail prices (15), (16) and the optimal technology investment level (17).

Substituting Eqs. (15), (16), (17) and (18) in Eqs. (9), (10) and (14), we can get the optimal profits of the manufacturers (19), (20) and the supplier’s optimal profit (21). \(\square \)

Proof of Lemma 3

For any given w, the Hessian matrix of \(\pi _{M_i}^{\mathrm{TT}}, i=1,2\) are as follows:

$$\begin{aligned} H(\pi _{M_{i}}^{\mathrm{TT}})=\begin{pmatrix} \frac{\partial ^2 \pi _{M_{i}}^{\mathrm{TT}}}{\partial p_{i}^2} &{} \frac{\partial ^2 \pi _{M_{i}}^{\mathrm{TT}}}{\partial p_{i}\partial t_i} \\ \frac{\partial ^2 \pi _{M_{i}}^{\mathrm{TT}}}{\partial t_i \partial p_i} &{} \frac{\partial ^2 \pi _{M_{i}}^{\mathrm{TT}}}{\partial t_{i}^2} \end{pmatrix}\\ =\begin{pmatrix} -2 &{}-\alpha \\ -\alpha &{} -\mu \end{pmatrix}. \end{aligned}$$

To ensure that \(\pi _{M_i}^{\mathrm{TT}}\) is jointly concave in \(p_i\) and \(t_{i}\), we require that the leading principal minor \(H_{1}^{\mathrm{TT}}=-2<0\), \(H_2^{\mathrm{TT}}=2\mu -\alpha ^2>0\). By the first order condition, that is \(\frac{\partial \pi _{M_i}^{\mathrm{TT}}}{\partial p_i}=0,\) \(\frac{\partial \pi _{M_i}^{\mathrm{TT}}}{\partial t_i}=0,\) we can obtain the unique optimal retail price (23) and the optimal technology investment level (24).

Substituting Eqs. (23) and (24) in Eq. (25), we get the supplier’s profit \(\pi _{S}^{\mathrm{TT}}(w)\). Because \(\frac{d^{2} \pi _{S}^{\mathrm{TT}}}{d w^{2}} \!=\!{\frac{4\mu (1\!-\!b)((b\!-\!2)\mu \!-\!2(b\!-\!1)\alpha ) }{ \left( \left( \!-\!{\alpha }^{2}\!+\!\mu \right) b\!+\!{\alpha }^{2}\!-\!2\,\mu \right) ^{2}}} <0\), that is \(\mu >\frac{2(1-b)\alpha }{(2-b)}\), we have \(\pi _{S}^{\mathrm{TT}}(w)\) is concave in w. By the first order condition, we get the unique optimal wholesale price (28). By substituting Eq. (28) in Eqs. (23) and (24), we obtain the unique optimal retail price (26) and the technology investment level (27).

Finally, substituting Eqs. (26), (27) and (28) in Eqs. (22) and (25), we derive the manufacturers’ optimal profits (29) and the supplier’s optimal profit (30). \(\square \)

Proof of Corollary 1

In order to make the decision variables to be positive and the uniqueness of optimal solutions in case \(\mathrm{TT}\), \(a+(b-1)c>0\), \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \) are needed. With resect to \(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), we can simplify it as follows. When \(0<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), we have \(\frac{\alpha ^2}{2}<\mu _{p}^{\mathrm{TT}}\), then \(\mu _{p}^{\mathrm{TT}}=\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), when \(\alpha >\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), we have \(\mu _{p}^{\mathrm{TT}}<\frac{\alpha ^2}{2}\), then \(\frac{\alpha ^2}{2}=\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \).

For any given \(\alpha \), we have

$$\begin{aligned} \frac{\partial t_{i}^{\mathrm{TT}}}{\partial \alpha }= & {} -{\frac{\mu \, \left[ \left( b-1 \right) c+a \right] \left( b-2\right) }{ 2\left[ \mu \, \left( b-2 \right) -2\,\alpha \, \left( b-1\right) \right] ^{2}}},\nonumber \\ \frac{\partial w^{\mathrm{TT}}}{\partial \alpha }= & {} -{\frac{ \left[ \left( 1-b \right) {\alpha }^{2}+\mu \, \left( b-2\right) \alpha -\mu \, \left( b-2 \right) \right] \left[ \left( b-1\right) c+a \right] }{ \left[ \mu \, \left( b-2 \right) -2\,\alpha \,\left( b-1 \right) \right] ^{2}}},\nonumber \\ \frac{\partial p_{i}^{\mathrm{TT}}}{\partial \alpha }= & {} -{\frac{\mu \, \left[ \left( b-1 \right) c+a \right] }{\left[ \mu \,\left( b-2 \right) -2\,\alpha \, \left( b-1 \right) \right] ^{2}}},\nonumber \\ \frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \alpha }= & {} -{\frac{{\mu }^{2} \left[ \left( b-1 \right) c+a \right] ^{2}\left[ 4(1-b)-\alpha \, \left( 2-b \right) \right] }{4 \left[ \mu \,\left( b-2 \right) -2\,\alpha \, \left( b-1 \right) \right] ^{3}}},\nonumber \\ \frac{\partial \pi _{s}^{\mathrm{TT}}}{\partial \alpha }= & {} {\frac{ \left[ \left( b-1 \right) c+a \right] ^{2}\mu }{ \left[ \mu \,\left( b-2 \right) -2\,\alpha \, \left( b-1 \right) \right] ^{2}}}. \end{aligned}$$
(31)

From (31), we have the following results.

  1. (1)

    Apparently, when \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), we have \(\frac{\partial t^{\mathrm{TT}}}{\partial \alpha }>0\) and \(\frac{\partial p_i^{\mathrm{TT}}}{\partial \alpha }<0\). Therefore, results (i) and (iii) hold.

  2. (ii)

    If \(0<\alpha <1\), we have \(\mu _{p}^{\mathrm{TT}}> \frac{\alpha ^2}{2}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }<0\). If \(1<\alpha <\frac{4a(2-b)}{2a(2-b)+(a+bc-c)}\), we have \(\frac{\alpha ^2}{2}<\mu _{p}^{\mathrm{TT}}<\frac{(1-b)\alpha ^2}{(2-b)(\alpha -1)}\), when \(\mu _{p}^{\mathrm{TT}}<\mu <\frac{(1-b)\alpha ^2}{(2-b)(\alpha -1)}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }<0\), when \(\mu >\frac{(1-b)\alpha ^2}{(2-b)(\alpha -1)}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }>0\). If \(\frac{4a(2-b)}{2a(2-b)+(a+bc-c)}<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), we have \(\max \{\frac{\alpha ^2}{2}, \frac{(1-b)\alpha ^2}{(2-b)(\alpha -1)}\}<\mu _{p}^{\mathrm{TT}}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }>0\). If \(\alpha >\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), we have \(\frac{\alpha ^2}{2}>\max \{\frac{(1-b)\alpha ^2}{(2-b)(\alpha -1)}, \mu _{p}^{\mathrm{TT}}\}\), when \(\mu >\frac{\alpha ^2}{2}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }>0\). That is, if \(\alpha >\frac{4a(2-b)}{2a(2-b)+(a+bc-c)}\), when \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \alpha }>0\). Therefore, result (ii) holds.

  3. (2)

    (i) From \(\frac{4(1-b)}{2-b}<\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), if \(0<\alpha <\frac{4(1-b)}{2-b}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), we have \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \alpha }>0\). If \(\frac{4(1-b)}{2-b}<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), we have \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \alpha }<0\), if \(\alpha >\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), when \(\mu > \frac{\alpha ^2}{2}\), we have \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \alpha }<0\). That is, if \(\alpha >\frac{4(1-b)}{2-b}\), when \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \alpha }<0\). Therefore, result (i) holds.

  4. (ii)

    Apparently, if \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), then \(\frac{\partial \pi _{s}^{\mathrm{TT}}}{\partial \alpha }>0\). Therefore, result (ii) holds. \(\square \)

Proof of Corollary 2

For any given \(\mu \), we have

$$\begin{aligned} \frac{\partial t_{i}^{\mathrm{TT}}}{\partial \mu }= & {} {\frac{ \alpha \,\left[ \left( b-1 \right) c+a \right] \left( b-2 \right) }{ 2\left[ \mu \, \left( b-2 \right) -2\,\alpha \,\left( b-1\right) \right] ^{2}}},\nonumber \\ \frac{\partial w^{\mathrm{TT}}}{\partial \mu }= & {} {\frac{ \left( \alpha -2 \right) \left( b-2 \right) \left[ \left( b-1 \right) c+a \right] \alpha }{ 2\left[ \mu \, \left( b-2\right) -2\,\alpha \, \left( b-1 \right) \right] ^{2}}},\nonumber \\ \frac{\partial p_{i}^{\mathrm{TT}}}{\partial \mu }= & {} {\frac{ \left[ \left( b-1 \right) c+a \right] \alpha }{ \left[ \mu \,\left( b-2 \right) -2\,\alpha \, \left( b-1 \right) \right] ^{2}}},\nonumber \\ \frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }\!=\! & {} {\frac{\alpha \, \left[ \left( b\!-\!1 \right) c\!+\!a \right] ^{2}\left[ 2\, \left( b\!-\!1 \right) {\alpha }^{2}\!+\!\mu \, \left( b\!-\!2 \right) \alpha \!-\!8\,\mu \, \left( b\!-\!1 \right) \right] }{ 8\left[ \mu \, \left( b\!-\!2\right) \!-\!2\,\alpha \, \left( b\!-\!1 \right) \right] ^{3}}},\nonumber \\ \frac{\partial \pi _{s}^{\mathrm{TT}}}{\partial \mu }= & {} -{\frac{\alpha \, \left[ \left( b-1 \right) c+a \right] ^{2}}{\left[ \mu \, \left( b-2 \right) -2\,\alpha \, \left( b-1 \right) \right] ^{2}}}. \end{aligned}$$
(32)

From (32), we have the following results.

  1. (1)

    Apparently, if \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), we can obtain \(\frac{\partial t^{\mathrm{TT}}}{\partial \mu }<0\) and \(\frac{\partial p_i^{\mathrm{TT}}}{\partial \mu }>0\). Therefore, results (i) and (iii) hold.

  2. (ii)

    From \(\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\le 2\), that is \(b>\frac{2(a-c)}{4a-2c}\), if \(0<\alpha <2\), when \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \mu }>0\). If \(\alpha >2\), when \(\frac{\mu >\alpha ^2}{2}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \mu }<0\). From \(\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}>2\), that is \(0<b<\frac{2(a-c)}{4a-2c}\), if \(0<\alpha <2\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \mu }>0\). If \(\alpha >2\), when \(\mu >\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}\), then \(\frac{\partial w^{\mathrm{TT}}}{\partial \mu }<0\). Therefore, result (ii) holds.

  3. (2)

    (i) If \(0<\alpha <\frac{16a(1-b)}{2a(3-2b)+a-bc+c}\), we have \(\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}<\mu _{p}^{\mathrm{TT}}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }<0\). If \(\frac{16a(1-b)}{2a(3-2b)+a-bc+c}<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), we have \(\mu _{p}^{\mathrm{TT}}<\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), when \(\mu _{p}^{\mathrm{TT}}<\mu <\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }>0\), when \(\mu >\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }<0\). If \(\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}<\alpha < \frac{8(1-b)}{2-b}\), we have \(\frac{\alpha ^2}{2}<\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), when \(\frac{\alpha ^2}{2}<\mu <\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }>0\), when \(\mu >\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }<0\). That is, if \(\frac{16a(1-b)}{2a(3-2b)+a-bc+c}<\alpha <\frac{8(1-b)}{2-b}\), when \(\max \{\frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\}<\mu <\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }>0\), when \(\mu >\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }<0\). If \(\alpha >\frac{8(1-b)}{2-b}\), we have \(\frac{2(1-b)\alpha ^2}{(b-2)\alpha +8(1-b)}<\frac{\alpha ^2}{2}\), when \(\mu >\frac{\alpha ^2}{2}\), then \(\frac{\partial \pi _{M_{i}}^{\mathrm{TT}}}{\partial \mu }>0\). Therefore, result (i) holds.

  4. (ii)

    Apparently, when \(0<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\) and \(\mu >\mu _{p}^{\mathrm{TT}}\), or when \(\alpha >\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\) and \(\mu > \frac{\alpha ^2}{2}\),\(\frac{\partial \pi _{s}^{\mathrm{TT}}}{\partial \mu }<0\). Therefore, result (ii) holds.

\(\square \)

Proof of Proposition 1

In order to make the decision variables to be positive and the uniqueness of optimal solutions in cases \(\mathrm{TN}\) and \(\mathrm{TT}\), we require \(a+(b-1)c>0\), \(B_1+B_2<0\), \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{u}^{\mathrm{TN}}, \mu _{p}^{\mathrm{TT}}\right\} \)=\(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), because \(\mu _{u}^{\mathrm{TN}}<\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \). With resect to \(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), we can simplify it as follows. If \(0<\alpha <\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), then \(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} =\mu _{p}^{\mathrm{TT}}\). If \(\alpha >\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), then \(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} =\frac{\alpha ^2}{2}\).

  1. (1)

    \(\pi _{S}^{\mathrm{TT}}-\pi _{S}^{\mathrm{TN}}= {\frac{ f_{s}(\mu )\left( a+bc-c \right) ^{2}\alpha }{4\left[ 2\, \left( 1-b\right) \alpha + \left( b-2 \right) \mu \right] (B_1+B_2) }}\), where \(f_{s}(\mu )= 4(b+2)\mu ^2+(b+1)(b+2)\alpha ^2(\alpha -6)\mu +2(b+1)^2\alpha ^4 \). For \(f_{s}(\mu )\), from \(\Delta =(b+1)^2(b+2)^2\alpha ^4[(\alpha -6)^2-32]\), we have \(f_{s}(\mu )>0\) when \(\Delta <0\) if \(6-4\sqrt{2}<\alpha <6+4\sqrt{2}\). Clearly, if \(0<\alpha <6-4\sqrt{2}\) and \(\alpha >6+4\sqrt{2}\), then \(\Delta >0\). For \(f_{s}(\mu )=0\), we have two different real roots \(\mu _i=\frac{\alpha ^2(b+1)(6-\alpha \pm \sqrt{\alpha ^2-12\alpha +4})}{8(b+2)}\), i=1,2. Since \(\min \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\}>\mu _2>\mu _1\), when \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), we have \(f_{s}(\mu )>0\). In summary, when \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), we have \(f_{s}(\mu )>0\). Consequently, \(\pi _{S}^{\mathrm{TT}}>\pi _{S}^{\mathrm{TN}}\).

  2. (2)

    \(\pi _{S}^{\mathrm{TN}}-\pi _{S}^{\mathrm{NN}}={\frac{ \left( b+2 \right) \left( a+bc-c \right) ^{2}\alpha f_{s1}(u)}{4\left( b-2 \right) (B_1+B_2)}}\), where \(f_{s1}(u)=4(b+2)\mu -(b+1)(\alpha +2)\alpha ^2\). Clearly, when \(0<\mu <\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we get \(f_{s1}(u)<0\), when \(\mu >\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we get \(f_{s1}(u)>0\).

From \(g_{s1}^{\mu }=\mu _{p}^{\mathrm{TT}}-\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}=\frac{16a(1-b)(b+2)\alpha -(1+b)(\alpha ^2+2\alpha )[2a(1-b)+(a-bc+c)]\alpha }{4(b+2)[2a(1-b)+(a-bc+c)]}\), when \(0<\alpha <\alpha _{s1}\), where \(\alpha _{s1}=\frac{2(1+b)[2a(1-b)+(a-bc+c)]+\sqrt{\Delta _{s1}}}{2(1+b)[2a(1-b)+(a-bc+c)]}\), \(\Delta _{s1}=4(b+1)^2[2a(1-b)+(a-bc+c)]^2+64a(1-b^2)(b+2)[2a(1-b)+(a-bc+c)]\), we have \(g_{s1}^{u}>0\), when \(\alpha >\alpha _{s1}\), we have \(g_{s1}^{u}<0\). From \(g_{s2}^{\mu }=\frac{\alpha ^2}{2}-\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}=\frac{\alpha ^2[2-(b+1)\alpha ]}{4(b+2)}\), we derive that \(g_{s2}^{\mu }>0 \) if \(0<\alpha <\frac{2}{b+1}\) and \(g_{s2}^{\mu }<0 \) if \(\alpha >\frac{2}{b+1}\).

When \(\max \{\alpha _{s1},\frac{2}{b+1}\}<\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), where \(\max \{\alpha _{s1},\frac{2}{b+1}\}=\alpha _{s1}\), we can conclude that if \(0<\alpha <\max \{\alpha _{s1},\frac{2}{b+1}\}=\alpha _{s1}\), when \(\mu >\mu _{p}^{\mathrm{TT}}\), we have \(f_{s1}(u)>0\), that is \(\pi _{S}^{\mathrm{TN}}>\pi _{S}^{\mathrm{NN}}\). If \(\alpha >\alpha _{s1}\), when \(\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\}<\mu <\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we have \(f_{s1}(u)<0\), that is \(\pi _{S}^{\mathrm{TN}}<\pi _{S}^{\mathrm{NN}}\), when \(\mu >\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we get \(f_{s1}(u)>0\), that is \(\pi _{S}^{\mathrm{TN}}>\pi _{S}^{\mathrm{NN}}\).

When \(\min \{\alpha _{s1},\frac{2}{b+1}\}>\frac{8a(1-b)}{2a(1-b)+(a-bc+c)}\), where \(\min \{\alpha _{s1},\frac{2}{b+1}\}=\alpha _{s1}\), we can conclude that if \(0<\alpha <\max \{\alpha _{s1},\frac{2}{b+1}\}=\frac{2}{b+1}\), when \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), we have \(f_{s1}(u)>0\), that is \(\pi _{S}^{\mathrm{TN}}>\pi _{S}^{\mathrm{NN}}\). If \(\alpha >\frac{2}{b+1}\), when \(\frac{\alpha ^2}{2}<\mu <\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we have \(f_{s1}(u)<0\), that is \(\pi _{S}^{\mathrm{TN}}<\pi _{S}^{\mathrm{NN}}\), when \(\mu >\frac{(b+1)(\alpha +2)\alpha ^2}{4(b+2)}\), we get \(f_{s1}(u)>0\), that is \(\pi _{S}^{\mathrm{TN}}>\pi _{S}^{\mathrm{NN}}\).

  1. (3)

    When \(\mu >\max \left\{ \frac{\alpha ^2}{2}, \mu _{p}^{\mathrm{TT}}\right\} \), \(\pi _{S}^{\mathrm{TT}}-\pi _{S}^{\mathrm{NN}}= {\frac{\alpha \, \left( \left( b-1 \right) c+a \right) ^{2}}{ \left( b-2 \right) (2\alpha (1-b)+\mu (b-2))}}>0\).

From results (1), (2) and (3), we conclude that Proposition 1 holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Liu, H., Wang, G. et al. Supplier’s cooperation strategy with two competing manufacturers under wholesale price discount contract considering technology investment. Soft Comput 25, 10381–10398 (2021). https://doi.org/10.1007/s00500-021-05904-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05904-0

Keywords

Navigation