Skip to main content
Log in

Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems

  • Application of soft computing
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Recent developments designate the quick growing of optimization meta-heuristics in the domain of optimization. Sine–cosine optimizer is a stochastic technique that generates various preliminary random research agents global optimal solutions and involves them to fluctuate toward or outwards the superior global optima solution utilizing a mathematical model based on sine and cosine trigonometry functions. Nevertheless, standard SCA provides insufficient global optima results on complex dimension functions illustrating poor convergence rate. The search process of the SCA method holds various shortcomings such as slow convergence, weak balance amid exploration and exploitation, and inefficiency in convergence. To overcome these shortcomings in this work, we are trying to present a new heuristic approach based on merging the features of SCA (sine–cosine approach) with a HS (harmony search approach) known as HSCAHS algorithm. The existing approach integrates the merits of the sine–cosine algorithm and HS algorithm to reduce demerits, like the trapping in local optima and unbalanced exploitation. The new approach presents own work performance in two different stages; firstly, the sine–cosine algorithm starts the explore procedure to augment exploration capability. Secondly, harmony search part starts its search from SCA finds so far to augment the exploitation tendencies. Hence, hybrid approach can find best possible solution in which least time improves the exploitation and exploration. Hence, the newly existing hybrid approach can be quickly convergent, statistically sound and more robust. The capability of the hybrid approach is verified by applying it on eighteen tested benchmark, economic dispatch, three-bar truss design, rolling element bearing design, multiple disc clutch brake design, speed reducer design and planetary gear train design problems. The experimental solutions reveal that the hybrid approach is able to finding the superior quality of optimal goal (or solution) of the optimize functions in most cases in comparison with others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120(4):423–443

    Article  Google Scholar 

  • BoussaïD I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  • Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16(3):527–561

    Article  Google Scholar 

  • Zakeri E, Moezi SA, Bazargan-Lari Y, Zare A (2017) Multi-tracker optimization algorithm: a general algorithm for solving engineering optimization problems. Iran J Sci Technol Trans Mech Eng 41(4):315–341

    Article  Google Scholar 

  • Xue B, Zhang M, Browne WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626

    Article  Google Scholar 

  • Bozorg-Haddad O (2018) Advanced optimization by nature-inspired algorithms. Springer, Berlin

    Book  Google Scholar 

  • Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S (2019) Henry gas solubility optimization: a novel physics-based algorithm. Futur Gener Comput Syst 101:646–667

    Article  Google Scholar 

  • Dommel H, Tinney W (1968) Optimal power flow solutions. IEEE Trans Power Appar Syst 87(10):1866–1876

    Article  Google Scholar 

  • Chung TS, Li YZ (2001) A hybrid GA approach for OPF with consideration of facts devices. IEEE Power Eng Rev 1(1):47–50

    Article  Google Scholar 

  • Cai LJ, Erlich I, Stamtsis G (2004) Optimal choice and allocation of facts devices in deregulated electricity market using genetic algorithms. IEEE 1(1):1–10

    Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 1:1942–1948

    Article  Google Scholar 

  • Soares J, Sousa T, Vale ZA, Morais H, Faria P (2011) Ant colony search algorithm for the optimal power flow problem. IEEE Power Energy Soc Gen Meet 1(1):1–8

    Google Scholar 

  • Kumar Kalaiselvi V, Chandrasekar K (2010-II) Enhanced genetic algorithm for optimal electric power flow using TCSC and TCP. In: Proceedings of World, vol 1, pp 1–8

  • Kumar KV, Chandrasekar K (2002) Optimal power flow by enhanced genetic algorithm. IEEE Trans Power Syst 17(2):229–236

    Article  Google Scholar 

  • Slimani L, Bouktir T (2012) Optimal power flow solution of the Algerian electrical network using DA. Telkomnika 10(1):199–210

    Article  Google Scholar 

  • Hsun LR, Ren TS, Tone CY, Tseng WT (2011) Optimal power flow by a fuzzy based hybrid particle swarm optimization approach. Electr Power Syst Res 81(7):1466–1476

    Article  Google Scholar 

  • Sinsupan N, Leeton U, Kulwora WT (2010) Application of harmony search to optimal power flow problems. IEEE Xplore 1(1):219–222

    Google Scholar 

  • Ben-Tal A, El haoui L, Nemirovski A, (2009) Robust optimization. Princeton Ser Appl Math 1(1):9–16

  • Chowdhury BH (1992) Towards the concept of integrated security: optimal dispatch under static and dynamic security constraints. Electr Power Syst Res 25(1):213–225

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evolut Comput 12(6):702–713

    Article  Google Scholar 

  • Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimization. Adv Eng Softw 69(1):46–61

    Article  Google Scholar 

  • Abido MA (2002) Optimal power flow using Tabu search algorithm. Electr Power Comput Syst 30(1):469–483

    Article  Google Scholar 

  • Mukherjee A, Mukherjee V (2015) Solution of optimal power flow using chaotic krill herd algorithm. Chaos Solitons Fractals 78(1):10–21

    Article  MathSciNet  Google Scholar 

  • Mirjalili S (2015) The ant lion optimizer. Adv Eng Sofw 83(1):80–98

    Article  Google Scholar 

  • Duman S, Güvenç U, Sönmez Y, Yörökeren N (2012) Optimal power flow using gravitational search algorithm. Energy Converg Manag 59(1):86–95

    Article  Google Scholar 

  • Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowledge-based systems. Elsevier, Amsterdam, pp 120–133

    Google Scholar 

  • Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 4(1):1053–1073

    Article  Google Scholar 

  • Bouchekara HREH (2014) Optimal power flow using black-hole-based optimization approach. Appl Soft Comput 24(1):879–888

    Article  Google Scholar 

  • Mirjalili S (2016) The whale optimization algorithm. Adv Eng Softw 9(1):51–67

    Article  Google Scholar 

  • Daryani N, Hagh MT, Teimourzadeh S (2016) Adaptive group search optimization algorithm for multi-objective optimal power flow problem. Appl Soft Comput 38(1):1012–1024

    Article  Google Scholar 

  • Daryani N, Hagh MT, Teimourzadeh S (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 2(1):495–513

    Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89(1):228–249

    Article  Google Scholar 

  • Mirjalili S (2013) Optimal power flow using cuckoo optimization algorithm. Ijareeie 1(1):4213–4218

    Google Scholar 

  • Mirjalili S (2016) Grasshopper optimization algorithm: theory and application. Adv Eng Softw 105(1):30–47

    Google Scholar 

  • Singh N, Singh SB (2011) One half global best position particle swarm optimization algorithm. Int J Sci Eng Res 2(8):1–10

    Google Scholar 

  • Singh N, Singh SB (2012) Personal best position particle swarm optimization. J Appl Comput Sci Math 12(6):69–76

    Google Scholar 

  • Singh N, Singh S, Singh SB (2012) Half mean particle swarm optimization algorithm. Int J Sci Eng Res 3(8):1–9

    Google Scholar 

  • Singh N, Hachimi H (2018) A new hybrid whale optimizer algorithm with mean strategy of grey wolf optimizer for global optimization. Math Comput Appl 23(14):1–32

    MathSciNet  MATH  Google Scholar 

  • Singh N, Singh S, Singh SB (2012) HPSO: a new version of particle swarm optimization algorithm. J Artif Intell 3(3):123–134

    Google Scholar 

  • Singh N (2017) Singh SB (2012) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for improving convergence performance. J Appl Math 2030489:1–15

  • Singh N, Singh SB (2017) A new hybrid MGBPOSA-GSA variant for improving function optimization solution in search space. Evolut Biol 13(1):1–13

    Google Scholar 

  • Singh N, Singh SB (2017) A novel hybrid GWO-SCA approach for optimization problems. Eng Sci Technol Int J 20(6):1586–1601

    Google Scholar 

  • Singh N, Singh SB (2017) A modified mean grey wolf optimization approach for benchmark and biomedical problems. Evolut Biol 13(1):1–28

    Google Scholar 

  • Singh N (2019) A modified variant of grey wolf optimizer. Sci Iran Int J Sci Technol 1(1):1–31

    Google Scholar 

  • Singh N, Singh SB, Houssein EH (2020) Hybridizing salp swarm algorithm with particle swarm optimization algorithm for recent optimization functions. Evol Intell 1(1):1–31. https://doi.org/10.1007/s12065-020-00486-6

    Article  Google Scholar 

  • Kaur M, Kaur R, Singh N, Dhiman G (2020) Schoa: An newly fusion of sine and cosine with chimp optimization algorithm for HLS of datapaths in digital filters and engineering applications. Comput Eng 1(1):1–36. https://doi.org/10.1007/s00366-020-01233-2

    Article  Google Scholar 

  • Singh N, Son LH, Chiclana F, Magnot JP (2020) A new fusion of SALP swarm with sine cosine for optimization of non-linear functions. Comput Eng 36(1):185–212. https://doi.org/10.1007/s00366-018-00696-8

    Article  Google Scholar 

  • Alresheedi SS, Lu S, Elaziz MA, Ewees AA (2019) Improved multiobjective SALP swarm optimization for virtual machine placement in cloud computing. HCIS 9(1):15

    Google Scholar 

  • Zhao H, Huang G, Yan N (2018) Forecasting energy-related co2 emissions employing a novel SSA-LSSVM model: considering structural factors in China. Energies 11(4):781

    Article  Google Scholar 

  • Asaithambi S, Rajappa M (2018) Swarm intelligence-based approach for optimal design of CMOS differential amplifier and comparator circuit using a hybrid SALP swarm algorithm. Rev Sci Instrum 89(5):

    Article  Google Scholar 

  • Faris H, Mafarja MM, Heidari AA, Aljarah I, Ala’M A-Z, Mirjalili S, Fujita H (2018) An efficient binary SALP swarm algorithm with crossover scheme for feature selection problems. Knowl-Based Syst 154:43–67

    Article  Google Scholar 

  • Yang B, Zhong L, Zhang X, Shu H, Yu T, Li H, Jiang L, Sun L (2019) Novel bio-inspired memetic SALP swarm algorithm and application to MPPT for PV systems considering partial shading condition. J Clean Prod 215:1203–1222

    Article  Google Scholar 

  • Barik AK, Das DC, Active power management of isolated renewable microgrid generating power from rooftop solar arrays, sewage waters and solid urban wastes of a smart city using SALP swarm algorithm, in, (2018) Technologies for Smart-City Energy Security and Power (ICSESP). IEEE 2018:1–6

  • El-Fergany AA (2018) Extracting optimal parameters of PEM fuel cells using SALP swarm optimizer. Renew Energy 119:641–648

    Article  Google Scholar 

  • Baygi SMH, Karsaz A, Elahi A, A hybrid optimal PID-fuzzy control design for seismic exited structural system against earthquake: a SALP swarm algorithm. In: 6th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE, pp 220–225

  • Kurtulus E, Yildiz AR, Sait SM, Bureerat S (2020) A novel hybrid Harris Hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails. Mater Test 62(3):251–260. https://doi.org/10.3139/120.111478

    Article  Google Scholar 

  • Yildiz BS (2020) Optimal design of automobile structures using moth-flame optimization algorithm and response surface methodology. Materials Test 62(4):371–377. https://doi.org/10.3139/120.11149

    Article  Google Scholar 

  • Yildiz BS (2020) The mine blast algorithm for the structural optimization of electrical vehicle components. Mater Test 62(5):497–501. https://doi.org/10.3139/120.111511

    Article  Google Scholar 

  • Ozkaya H, Yildiz M, Yildiz AR, Bureerat S, Yildiz BS, Sait SM (2020) The equilibrium optimization algorithm and the response surface-based meta model for optimal structural design of vehicle components. Mater Test 62(5):492–496. https://doi.org/10.3139/120.111509

    Article  Google Scholar 

  • Yildiz AR, Yildiz BS, Sait SM, Li X (2019) The Harris Hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations. Mater Test 61(8):725–733. https://doi.org/10.3139/120.111377

    Article  Google Scholar 

  • Yildiz AR, Yildiz BS, Sait SM, Pholdee SB (2019) A new hybrid Harris Hawks Nelder-mead optimization algorithm for solving design and manufacturing problems. Mater Test 61(8):735–743. https://doi.org/10.3139/120.111378

    Article  Google Scholar 

  • Yildiz BS, Yildiz AR (2019) The Harris hawks optimization algorithm, SALP swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components. Mater Test 61(8):744–748. https://doi.org/10.3139/120.111379

    Article  Google Scholar 

  • Yildiz BS (2020) The spotted hyena optimization algorithm for weight-reduction of automobile brake components. Mater Test 62(4):383–388. https://doi.org/10.3139/120.111495

    Article  Google Scholar 

  • Yildiz BS, Yildiz AR, Albak EI, Abderazek H, Sait SM, Bureerat S (2020) Butterfly optimization algorithm for optimum shape design of automobile suspension components. Mater Test 62(4):365–370. https://doi.org/10.3139/120.111492

    Article  Google Scholar 

  • Yildiz BS, Yildiz AR (2018) Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod. Mater Test 60(3):311–315. https://doi.org/10.3139/120.111153

    Article  Google Scholar 

  • Yildiz BS, Yildiz AR (2017) Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes. Mater Test 59(5):425–429. https://doi.org/10.3139/120.111024

    Article  Google Scholar 

  • Yildiz AR (2019) A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems. Int J Adv Manuf Technol. https://doi.org/10.1007/s00170-019-04532-1

    Article  Google Scholar 

  • Abderazek H, Yildiz AR, Mirjalili S (2019) Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.105237

    Article  Google Scholar 

  • Hamza F, Abderazek H, Lakhdar S et al (2018) Optimum design of cam-roller follower mechanism using a new evolutionary algorithm. Int J Adv Manuf Technol 99:1267–1282. https://doi.org/10.1007/s00170-018-2543-3

    Article  Google Scholar 

  • Yildiz BS (2017) Natural frequency optimization of vehicle components using the interior search algorithm. Mater Test 59(5):456–458. https://doi.org/10.3139/120.111018

    Article  Google Scholar 

  • Geem ZW, H KJ, V LG, (2001) A new heuristic optimization algorithm: harmony search. Simulation 17(12):4831–4845

  • Geem ZW (2009) Music-inspired harmony search algorithm: theory and application, music-inspired harmony search algorithm: theory and applications, Berlin, Germany

  • Yuan X, Dai X, Zhao J, He Q (2014) On a novel multi-swarm fruit fly optimization algorithm and its application. Appl Math Comput 233(3):260–271

    MathSciNet  MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Singh N, Singh S, Singh SB (2017) A new hybrid MGBPO-GSA variant for improving function optimization solution in search space. Evol Biol 13(1):1–13

    Google Scholar 

  • Mirjalili S (2015) Moth-flame optimization algorithm. A novel nature-inspired heuristic paradigm. Knowl Based Syst 89(1):228–249

  • Gandomi AH, S YX, Alavi AH, (2013) Cuckoo search algorithm: a meta-heuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

  • Lu Y, Zhou Y, Wu X (2017) A hybrid lightning search algorithm-simplex method for global optimization. Discrete Dyn Nat Soc 8342694:1–23

    MathSciNet  MATH  Google Scholar 

  • Zhang M, Luo W, Wang X (2008) Differential evolution with dynamic stochastic selection for constrained optimization. Inform Sci 178(15):3043–3074

    Article  Google Scholar 

  • Liu CZ, Wang HY (2010) Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization. J Appl Soft Comput 10(2):629–640

    Article  Google Scholar 

  • Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Enhanced genetic algorithm for optimal electric power flow using TCSC and TCPS. J Appl Soft Comput 13(5):2592–2612

    Article  Google Scholar 

  • Chakraborty I, Kumar V, Nair SB, Tiwari R (2003) Rolling element bearing design through genetic algorithms. Eng Optim 35(6):649–659

    Article  Google Scholar 

  • Dhiman G (2019) Esa: a hybrid bio-inspired metaheuristic optimization approach for engineering problems. Eng Comput 37:323–353

    Article  Google Scholar 

  • Zhu H, Hu Y, Zhu W (2019) A dynamic adaptive particle swarm optimization and genetic algorithm for different constrained engineering design optimization problems. Adv Nonlinear Dyn Vib Mech Syst 11(3):1–27

    Google Scholar 

  • Pa S, D B, GV D, (2006) Teeth-number synthesis of a multi-speed planetary transmission using an estimation of distribution algorithm. ASME J Mech Des 10:108–115

  • Savsani P, Savsani V (2016) Passing vehicle search (PVA): a novel metaheuristic algorithm. Appl Math Model 40:3951–3978

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referees for their valuable comments that permitted to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narinder Singh.

Ethics declarations

Conflict of interest

Dr. Narinder Singh and Mrs. Jaspreet Kaur declare that they have no conflict of interest.

Research involving human participants and/or animals

Harmony search approach was firstly developed by Z.W. Geem et al. Geem et al. (2001), Geem (2009). The combination search is a music-inspired optimization technique. It is inspired by the criticism that the aim of music is to search for a perfect state of harmony.

On the other side, Seyedali Mirjalili Mirjalili (2016a) developed a new nature-inspired approach known as sine–cosine algorithm (SCA) for solving different types of application of separate fields. This approach establishes the solution of various basic random agents and enables them to exclude them from a mathematical model based on the trigonometric sine and cosine functions as the best possible outcomes. I have studied theoretical models developed by various researchers, viz. genetic algorithm (GA) Chung and Li (2001), Cai et al. (2004), particle swarm optimization (PSO) Kennedy and Eberhart (1995), ant colony optimization (ACO) Soares et al. (2011), differential evolution (DE) Kumar and Chandrasekar (2010), Kumar and Chandrasekar (2002), hybrid genetic algorithm (HGA) Slimani and Bouktir (2012), fuzzy-based hybrid particle swarm optimization (fuzzy HPSO) Hsun et al. (2011), harmony search algorithm Sinsupan et al. (2010), robust optimization (RO) Ben-Tal et al. (2009), artificial neural network (ANN) Chowdhury (1992), biogeography-based optimization algorithm (BBO) Simon (2008), gray wolf optimization (GWO) Mirjalili et al. (2014), tabu search (TS) Abido (2002), krill herd algorithm (KHA) Mukherjee and Mukherjee (2015), ant lion optimizer (ALO) Mirjalili (2015a), gravitational search algorithm (GSA) Duman et al. (2012), sine–cosine algorithm (SCA) Mirjalili (2016a), dragonfly algorithm (DA) Mirjalili (2016b), black hole-based optimization (BHBO) Bouchekara (2014), whale optimization algorithm (WOA) Mirjalili (2016c), adaptive group search optimization (AGSO) Daryani et al. (2016a), multi-verse optimizer (MVO) Daryani et al. (2016b), moth flame optimizer (MFO) Mirjalili (2015b), cuckoo search (CS) Mirjalili (2013), grasshopper optimization algorithm (GOA) Mirjalili (2016d), one half personal best position particle swarm optimization (OHGBPPSO) Singh and Singh (2011), personal best position particle swarm optimization (PBPPSO) Singh and Singh (2012a), half mean particle swarm optimization algorithm (HMPSO) Singh et al. (2012a), HAGWO Singh and Hachimi (2018), hybrid particle swarm optimization (HPSO) Singh et al. (2012b), HPSOGWO Singh and Singh (2012b), hybrid MGBPSO-GSA Singh and Singh (2017a), HGWOSCA Singh and Singh (2017b), MGWO Singh and Singh (2017c), MVGWO Singh (2019), HSSAPSO Singh et al. (2020), SChoA Kaur et al. (2020), HSSASCA Singh et al. (2020) and many more. Based on the work done by these authors, we have also proposed an hybrid approach, namely “hybrid sine–cosine algorithm–harmony search algorithm (HSCAHS)”. With this method, it is proposed to increase the convergence quality of the sine–cosine algorithm by accelerating the explore seeking instead of letting the approach running numerous iterations without any perfection. The new hybrid approach has been tested with numerous well-known standard test functions and some real-life applications. All experimental solutions ensured that the newer current access is a strong search approach for different compatibility applications. This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

No human/animal was involved in the current study. So informed consent is not applicable on my study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Benchmark test suites

figure b

Appendix

A: Welded beam design problem

Consider \(\vec {x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}} \right] =\left[ h\,l\,t\,b \right] \)

  • \(\text {Minimize } f\left( {\vec {x}} \right) =1.10471x_{1}^{2}{{x}_{2}}+0.04811{{x}_{3}}{{x}_{4}}\left( 14.0+{{x}_{2}} \right) \)

  • Subject to:

  • \({{g}_{1}}\left( {\vec {x}} \right) =\tau \left( {\vec {x}} \right) -13600\le 0\)

  • \({{g}_{2}}\left( {\vec {x}} \right) =\sigma \left( {\vec {x}} \right) -30000\le 0 \)

  • \({{g}_{3}}\left( {\vec {x}} \right) ={{x}_{1}}-{{x}_{4}}\le 0\)

  • \({{g}_{4}}\left( {\vec {x}} \right) =0.10471\left( x_{1}^{2} \right) +0.04811{{x}_{3}}{{x}_{4}}\left( 14+{{x}_{2}} \right) -5.0\le 0\)

  • \({{g}_{6}}\left( {\vec {x}} \right) =\delta \left( {\vec {x}} \right) -0.25\le 0\)

  • \({{g}_{7}}\left( {\vec {x}} \right) =6000-{{p}_{c}}\left( {\vec {x}} \right) \le 0\)

  • where

  • \(\tau \left( {\vec {x}} \right) =\sqrt{\left( {{\tau }'} \right) +\left( 2{\tau }'{\tau }'' \right) \frac{{{x}_{2}}}{2R}+{{\left( {{\tau }''} \right) }^{2}}}\)

  • \({\tau }'=\frac{6000}{\sqrt{2}{{x}_{1}}{{x}_{2}}}\)

  • \({\tau }''=\frac{MR}{J}\)

  • \(M=6000\left( 14+\frac{{{x}_{2}}}{2} \right) \)

  • \(R=\sqrt{\frac{x_{2}^{2}}{4}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right) }^{2}}}\)

  • \(j=2\left\{ {{x}_{1}}{{x}_{2}}\sqrt{2}\left[ \frac{x_{2}^{2}}{12}+{{\left( \frac{{{x}_{1}}+{{x}_{3}}}{2} \right) }^{2}} \right] \right\} \)

  • \(\sigma \left( {\vec {x}} \right) =\frac{504000}{{{x}_{4}}x_{3}^{2}}\)

  • \(\delta \left( {\vec {x}} \right) =\frac{65856000}{\left( 30\times {{10}^{6}} \right) {{x}_{4}}x_{3}^{3}}\)

  • \({{p}_{c}}\left( {\vec {x}} \right) =\frac{4.013\left( 30\times {{10}^{6}} \right) \sqrt{\frac{x_{3}^{2}x_{4}^{6}}{36}}}{196}\left( 1-\frac{{{x}_{3}}\sqrt{\frac{30\times {{10}^{6}}}{4\left( 12\times {{10}^{6}} \right) }}}{28} \right) \)

  • \(\text {with } 0.1\le {{x}_{1}},{{x}_{4}}\le 2.0\,and\,0.1\le {{x}_{2}},{{x}_{3}}\le 10.0 \)

B: Tension/compression spring design problem

Consider:

  • \( \vec {x}=\left[ {{x}_{1}}{{x}_{2}}{{x}_{3}} \right] =\left[ d\,D\,N \right] \)

  • \(\text {Minimize } f\left( {\vec {x}} \right) =\left( {{x}_{3}}+2 \right) {{x}_{2}}x_{1}^{2} \)

  • \(\text {subject to: }\)

  • \({{g}_{1}}\left( {\vec {x}} \right) =1-\frac{x_{2}^{3}{{x}_{3}}}{71785x_{1}^{4}}\le 0\)

  • \({{g}_{2}}\left( {\vec {x}} \right) =\frac{4x_{2}^{2}-{{x}_{1}}{{x}_{2}}}{12566\left( {{x}_{2}}x_{1}^{3}-x_{1}^{4} \right) }+\frac{1}{5108x_{1}^{2}}-1\le 0\)

  • \({{g}_{3}}\left( {\vec {x}} \right) =1-\frac{140.45{{x}_{1}}}{x_{2}^{2}{{x}_{3}}}\le 0\)

  • \({{g}_{4}}\left( {\vec {x}} \right) =\frac{{{x}_{1}}+{{x}_{2}}}{1.5}-1\le 0\)

  • \(\text {with } 0.05\le {{x}_{1}}\le 2.0,0.25\le {{x}_{2}}\le 1.3,and\,2.0\le {{x}_{3}}\le 15.0\)

C: Rolling element bearing design problem

\(\text {Maximum}[C_d(X)] ={\left\{ \begin{array}{ll}max(-f_cz^{2/3}D_b^{1.8}) &{} if D_b =\le 25.5mm 0\\ max(-3.647f_cz^{2/3}D_b^{1.4}) &{} if D_b =\le 25.5mm \end{array}\right. }\)

  • \(\text {Subject to: }\)

  • \(g_1(x)=\frac{\phi _0}{2\sin ^{-1}(D_b/D_m)}-Z+1\ge 0, \)

  • \(g_2(x)=2D_b-K_{D_{min}}(D-d)\ge 0,\)

  • \(g_3(x)=K_{D_{max}}(D-d)-2D_b\ge 0,\)

  • \(g_4(x)=\zeta B_w-D_b\ge 0,\)

  • \(g_5(x)=D_m-0.5(D+d)\ge 0,\)

  • \(g_6(x)=(0.5+e)(D+d)-D_m\ge 0,\)

  • \(g_7(x)=0.5(D-D_m-D_b)-\zeta D_b\ge 0,\)

  • \(g_8(x)=f_1\ge 0.515,\)

  • \(g_9(x)=f_0\ge 0.515,\)

  • where

  • \(f_c=37.91[1+[1.04(\frac{1-\gamma }{1+\gamma })^{1.72}] (\frac{f_i(2f_0-1)}{f_i-1})^{0.41}]^{10/3}]^{-0.3}\)

  • \(\gamma = \frac{D_b\cos \alpha }{D_m},\)

  • \(f_1=\frac{r_1}{D_b}\)

  • \(\phi _0=2\pi -20 \cos ^{-1}[\frac{(D-d)/2-3(T/4)^2+[D/2-(T/4-D_b)^2]-[d/2+(T/4)]^2]}{[2(D-d/2-3(T/4)][(T/4)-D_b]}]\)

  • \(T=D-d-2D_b,\)

  • \(D=160, d=90, B_w=30,\)

  • \(0.5(D+d)\le D_m\le 0.6(D+d),\)

  • \(0.15(D-d)\le D_b\le 0.45(D-d),\)

  • \(4\le Z\le 50, 0.515 \le f_1\le 0.6, 0.515\le f_0 \le 0.6,\)

  • \(0.4 \le K_{D_{min}}\le 0.5, 0.6 \le K_{D_{max}}\le 0.7,\)

  • \(0.3\le \epsilon \le 0.4, 0.02\le e \le 0.1, 0.6\le \xi \le 0.85\)

D: Multiple disc clutch brake design problem

  • \(Minimize f(x) = \pi (r_0^2-r_i^2)(Z+1)\rho t\)

  • s.t ;

  • \(g_1(x)=r_0-r_i-\Delta r\geqslant 0\)

  • \(g_2(x)=l_max-(Z+1)(t+\delta )\geqslant 0\)

  • \(g_3(x)=P_max-P_{rz}\geqslant 0\)

  • \(g_4(x)=P_max v_{vrmax}-P_{rz}v_{sr}\geqslant 0\)

  • \(g_5(x)=v_{srmax}-v_{sr}\geqslant 0\)

  • \(g_6(x)=T_max-T\geqslant 0\)

  • \(g_7(x)=M_h-sM_s\geqslant 0\)

  • \(g_8(x)=T\geqslant 0\)

  • where

  • \(M_h=\frac{2}{3}\mu FZ\frac{r_0^3-r_i^3}{r_0^2-r_i^2}\)

  • \(P_{rz}=\frac{2}{3}\frac{F}{\pi (r_0^2-r_i^2)}\)

  • \(v_{rz}=\frac{2\pi n (r_0^3-r_i^3)}{90(r_0^3-r_i^3)}\)

  • \(T = \frac{I_z\pi n}{30(M_h-M_f)}\)

  • \(\Delta r=20mm, I_z=55kgm^2, P_max=1MPa, F_max=1000N, T_max=15s,\mu =0.5\)

  • \(s=1.5, M_s=40Nm, M_f=3Nm, n=250r/min, v_{srmax}=10m/s, l_{max}=30mm\)

  • \(60mm\le r_i\le 80mm, 90mm\le r_0\le , 110mm, 1.5mm\le t \le 3mm,600N\le F\le 1000N, 2 \le Z \le 9 \)

E: Speed reducer design problem

  • \( Minimize(f(x))=0.7854x_1x_2^2(3.3333x_3^2+14.9334x_3-43.0934)-1.508x_1(x_6^2+x_7^2)+7.4777(x_6^3+x_7^3)+0.7854(x_4x_6^2+x_5x_7^2)\)

  • s.t;

  • \(g_1(x)=\frac{27}{x_1x_2^2x_3}-1\le 0\)

  • \(g_2(x)=\frac{397.5}{x_1x_2^2x_3^2}-1\le 0\)

  • \(g_3(x)=\frac{1.93x_4^3}{x_2x_6^4x_3}-1\le 0\)

  • \(g_4(x)=\frac{1.93x_5^3}{x_2x_7^4x_3}-1\le 0\)

  • \(g_5(x)=\frac{[(745x_4/x_2x_3)^2+16.9 \times 10^6]^0.5}{110x_6^3}-1\le 0\)

  • \(g_6(x)=\frac{[(745x_5/x_2x_3)^2+157.5 \times 10^6]^0.5}{85x_7^3}-1\le 0\)

  • \(g_7(x)=x_2x_3/40-1\le 0\)

  • \(g_8(x)=\frac{5x_2}{x_1}-1\le 0\)

  • \(g_9(x)=\frac{x_1}{12x_2}-1\le 0\)

  • \(g_10(x)=\frac{1.5x_6+1.9}{x_4}-1\le 0\)

  • \(g_11(x)=\frac{1.1x_7+1.9}{x_5}-1\le 0\)

  • where

  • \(2.6\le x_1\le , 0.7\le x_2\le 0.8, 17\le x_3 \le 28, 7.3\le x_4 \le 8.3, 7.3\le x_5\le 8.3\)

  • \(2.9\le x_6\le 3.9, 5.0\le x_7\le 5.5 \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Kaur, J. Hybridizing sine–cosine algorithm with harmony search strategy for optimization design problems. Soft Comput 25, 11053–11075 (2021). https://doi.org/10.1007/s00500-021-05841-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-021-05841-y

Keywords

Navigation