High utility itemset mining: a Boolean operators-based modified grey wolf optimization algorithm

Abstract

In data mining, mining high utility itemset (HUI) is one among the recent thrust area that receives several approaches for solving it in an effective manner. In the past decade, addressing optimization problems using evolutionary algorithms are an unavoidable strategy due to its convergence towards optimal solution within the stipulated time. The results of evolutionary algorithms on various optimization problems are far effective when compared to the exhaustive approaches with respect to computational time. The problem with HUI is discovering a set of items from a transactional database that possess high level of utility when compared with other distinctive sets. This problem becomes harder while addressing the count of items in the database while its higher and computational time to solve this problem using exhaustive search becomes exponential as proposition of items in transaction database increases. In this paper, an optimization model based on the biological behaviour of grey wolf is proposed; the model namely grey wolf optimization algorithm is used to solve HUI using five different Boolean operations. The proposed model is evaluated using standard performance metrics over synthetic datasets and real-world datasets. The proposed model results are then compared with recent HUIM models to show the significance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. 1.

    https://en.wikipedia.org/wiki/Multiplexer.

References

  1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Proceedings of international conference on very large data bases. pp 487–499

  2. Ahmed CF, Tanbeer SK, Jeong BS, Lee YK (2009) Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708–1721

    Article  Google Scholar 

  3. Benites F, Sapozhnikova E (2014) Evaluation of hierarchical interestingness measures for mining pairwise generalized association rules. IEEE Trans Knowl Data Eng 26(12):3012–3025

    Article  Google Scholar 

  4. Bindhu V (2019) Biomedical image analysis using semantic segmentation. J Innov Image Process (JIIP). 1(02):91–101

    Article  Google Scholar 

  5. Chan R, Yang Q, Shen Y-D (2003) Mining high utility itemsets. In: Proceedings of 3rd IEEE international conference on data mining. pp 19–26

  6. Fournier-Viger P, et al (2016) The SPMF open-source data mining library version 2. In: Proceedings of 19th European conference principles of data mining and knowledge discovery. pp. 36–40

  7. Gou J, Wang F, Luo W (2015) Mining fuzzy association rules based on parallel particle swarm optimization algorithm. Intell Autom Soft Comput 21(2):147–162

    Article  Google Scholar 

  8. Guo S-M, Gao H (2016) HUITWU: An efficient algorithm for high-utility itemset mining in transaction databases. J Comput Sci Technol 31(4):776–786

    Article  Google Scholar 

  9. Han J, Pei J, Yin Y, Mao R (2004) Mining frequent patterns without candidate generation: a frequent-pattern tree approach. Data Mining Knowl Discov 8(1):53–87

    MathSciNet  Article  Google Scholar 

  10. Heraguemi KE, Kamel N, Drias H (2016) Multi-swarm bat algorithm for association rule mining using multiple cooperative strategies. Appl Intell 45(4):1021–1033

    Article  Google Scholar 

  11. Huang J-P, Yang C-T, Fu C-H (2004) A genetic algorithm based searching of maximal frequent itemsets. In: Proceedings of international conference on artificial intelligence. pp 548–554

  12. Jacob IJ (2019) Capsule network based biometric recognition system. J Artif Intell 1(02):83–94

    Google Scholar 

  13. Kannimuthu S, Premalatha K (2014) Discovery of high utility itemsets using genetic algorithm with ranked mutation. Appl Artif Intell 28(4):337–359

    Article  Google Scholar 

  14. Lan G-C, Hong T-P, Tseng VS (2014) An efficient projection-based indexing approach for mining high utility itemsets. Knowl Inf Syst 38(1):85–107

    Article  Google Scholar 

  15. Li X (2003) A new intelligent optimization-artificial fish swarm algorithm. Doctor thesis, Zhejiang University of Zhejiang, China

  16. Li YC, Yeh JS, Chang CC (2008) Isolated items discarding strategy for discovering high utility itemsets. Data Knowl Eng 64(1):198–217

    Article  Google Scholar 

  17. Lin M-Y, Tu T-F, Hsueh S-C (2012) High utility pattern mining using the maximal itemset property and lexicographic tree structures. Inf Sci 215:1–14

    Article  Google Scholar 

  18. Lin JC-W et al (2016) Mining high-utility itemsets based on particle swarm optimization. Eng Appl Artif Intell 55:320–330

    Article  Google Scholar 

  19. Lin JC-W, Yang L, Fournier-Viger P, Hong T-P, Voznak M (2017) A binary PSO approach to mine high-utility itemsets. Soft Comput 21(17):5103–5121

    Article  Google Scholar 

  20. Liu Y, Liao W-K, Choudhary AN (2005) A two-phase algorithm for fast discovery of high utility itemsets. In: Proceedings of 9th Pacific–Asia conference on advance knowledge discovery data mining. pp 689–695

  21. Martín D, AlcalÆ-Fdez J, Rosete A, Herrera F (2016) NICGAR: A Niching Genetic Algorithm to mine a diverse set of interesting quantitative association rules. Inf Sci 355–356:208–228

    Article  Google Scholar 

  22. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  23. Muro C, Escobedo R, Spector L, Coppinger RP (2011) Wolf-pack (Canis lupus) hunting strategies emerge from simple rules in computational simulations. Behav Proc 88(3):192–197

    Article  Google Scholar 

  24. Pears R, Koh YS (2011) Weighted association rule mining using particle swarm optimization. In: Proceedings of PAKDD workshop bio-inspired technology data mining. pp 327–338

  25. Quadrana M, Bifet A, Gavaldà R (2015) An efficient closed frequent itemset miner for the MOA stream mining system. AI Commun 28(1):143–158

    MathSciNet  MATH  Article  Google Scholar 

  26. Song W, Huang C (2018) Mining high utility itemsets using bio-inspired algorithms: a diverse optimal value framework. IEEE Access 6:19568–19582

    Article  Google Scholar 

  27. Song W, Yang B, Xu Z (2008) Index-BitTableFI: An improved algorithm for mining frequent itemsets. Knowl Based Syst 21(6):507–513

    Article  Google Scholar 

  28. Song W, Liu Y, Li J (2014) BAHUI: Fast and memory efficient mining of high utility itemsets based on bitmap. Int J Data Warehous 10(1):1–15

    Article  Google Scholar 

  29. Thirugnanasambandam K, Prakash S, Subramanian V et al (2019) Reinforced cuckoo search algorithm-based multimodal optimization. Appl Intell 49:2059–2083. https://doi.org/10.1007/s10489-018-1355-3

    Article  Google Scholar 

  30. Tran T, Vo B, Le TTN, Nguyen NT (2017) Text clustering using frequent weighted utility itemsets. Cybern Syst 48(3):193–209

    Article  Google Scholar 

  31. Tseng VS, Shie B-E, Wu C-W, Yu PS (2013) Efficient algorithms for mining high utility itemsets from transactional databases. IEEE Trans Knowl Data Eng 25(8):1772–1786

    Article  Google Scholar 

  32. Wang J-S, Li S-X (2019) An improved grey wolf optimizer based on differential evolution and elimination mechanism. Sci Rep 9(1):1–21

    Article  Google Scholar 

  33. Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26(1):97–107

    Article  Google Scholar 

  34. Yang X-S (2011) Bat algorithm for multi-objective optimization. Int J BioInspired Comput 3(5):267–274

    Article  Google Scholar 

  35. Yao H, Hamilton HJ, Butz CJ (2004) A foundational approach to mining itemset utilities from databases. In: Proceedings of 4th SIAM international conference on data mining. pp 482–486

  36. Zaki MJ (2014) Data mining and analysis: fundamental concepts and algorithms. Cambridge University Press, Cambridge

    MATH  Book  Google Scholar 

  37. Zhang C, Zhang S (2002) Association rule mining: models and algorithms. Springer, Berlin

    MATH  Book  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Sountharrajan.

Ethics declarations

Conflict of interest

The authors of this paper have declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pazhaniraja, N., Sountharrajan, S. & Sathis Kumar, B. High utility itemset mining: a Boolean operators-based modified grey wolf optimization algorithm. Soft Comput 24, 16691–16704 (2020). https://doi.org/10.1007/s00500-020-05123-z

Download citation

Keywords

  • High utility itemset
  • Boolean operators
  • Grey wolf optimization algorithm