Skip to main content
Log in

Applying the fuzzy CESTAC method to find the optimal shape parameter in solving fuzzy differential equations via RBF-meshless methods

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, by using the CESTAC method and the CADNA library a procedure is proposed to solve a fuzzy initial value problem based on RBF-meshless methods under generalized H-differentiability. So a reliable approach is presented to determine optimal shape parameter and number of points for RBF-meshless methods. The results reveal that the proposed method is very effective and simple. Also, the numerical accuracy of the method is shown in the tables and figures, and algorithms are given based on the stochastic arithmetic. The examples illustrate the efficiency and importance of using the stochastic arithmetic in place of the floating-point arithmetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  • Abbasbandy S, Fariborzi Araghi MA (2005) A Stochastic scheme for solving definite integrals. Appl Numer Math V 55:125–136

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Fariborzi Araghi MA (2004) The use of the stochastic arithmetic to estimate the value of interpolation polynomial with optimal degree. Appl Numer Math 50:279–290

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Fariborzi Araghi MA (2002) A reliable method to determine the ill-condition functions using stochastic arithmetic. Southwest J Pure Appl Math 1:33–38

    MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Fariborzi Araghi MA (2002) The valid implementation of numerical integration methods. Far East J Appl Math 8:89–101

    MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Allahviranloo T, Lopez-Pouso O, Nieto JJ (2004) Numerical methods for fuzzy differential inclusions. J Comput Math Appl 48:1633–1641

    Article  MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Allahviranloo T (2004) Numerical solution of fuzzy differential equation by Runge–Kutta method. Nonlinear Stud 11:117–129

    MathSciNet  MATH  Google Scholar 

  • Abbasbandy S, Allahviranloo T (2002) Numerical solution of fuzzy differential equation. Math Comput Appl 7:41–52

    MathSciNet  Google Scholar 

  • Abbasbandy S, Allahviranloo T (2002) Numerical solution of fuzzy differential equation by Talor method. J Comput Methods Appl Math 2:113–124

    Article  Google Scholar 

  • Anastassiou GA (2010) Fuzzy mathematics: approximation theory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Allahviranloo T, Ahmady N, Ahmady E (2007) Numerical solution of fuzzy differential equations by predictor–corrector method. Inf Sci 177:1633–1647

    Article  MathSciNet  MATH  Google Scholar 

  • Allahviranloo T, Ahmady E, Ahmady N (2008) \( N \)th-order fuzzy linear differential equations. Inf Sci 178:1309–1324

    Article  MATH  MathSciNet  Google Scholar 

  • Allahviranloo T, Salahshour S (2011) Fuzzy symmetric solutions of fuzzy linear systems. Appl Math Comput 235:4545–4553

    Article  MathSciNet  MATH  Google Scholar 

  • Amirfakhrian M, Shakibi K, Rodriguez Lopez R (2017) Fuzzy quasi-interpolation solution for Fredholm fuzzy integral equations of second kind. Soft Comput 21:4323–4333

    Article  MATH  Google Scholar 

  • Barzegar Kelishami H, Fariborzi Araghi MA, Amirfakhrian M (2020) The use of CESTAC method to find optimal shape parameter and optimal number of points in RBF-meshless methods to solve differential equations. Comput Methods Differ Equ (In press)

  • Bayrak MA, Can E (2015) numerical solution of fuzzy differential equations by Milne’s predictor–corrector method. Math Sci Appl 3:137–153

    MathSciNet  MATH  Google Scholar 

  • Bede B (2008) Note on “Numerical solutions of fuzzy differential equations by predictor-corrector method”. Inf Sci 178:1917–1922

    Article  MathSciNet  MATH  Google Scholar 

  • Bede B, Gal SG (2005) Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst 151:581–599

    Article  MathSciNet  MATH  Google Scholar 

  • Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge monographs on applied and computational mathematics, vol 12. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Buckley JJ, Feuring T (2001) Fuzzy initial value problem for \(N\)th-order fuzzy linear differential equations. Fuzzy Sets Syst 121:247–255

    Article  MATH  MathSciNet  Google Scholar 

  • Chang SL, Zadeh LA (1972) On fuzzy mapping and control. IEEE Trans Syst Cybern 2:30–34

    Article  MathSciNet  MATH  Google Scholar 

  • Chalco-Cano Y, Romtan-Flores H (2008) On new solutions of fuzzy differential equations. Chaos Solitons Fractals 38:112–119

    Article  MathSciNet  MATH  Google Scholar 

  • Chen C-B, Lee ES (2001) Fuzzy regression with radial basis function network. Fuzzy Sets Syst 119:291–301

    Article  MathSciNet  Google Scholar 

  • Chesneaux JM, Jezequel F (1998) Dynamical control of computations using the trapezodial and Simpson’s rules. J Univ Comput Sci 4:2–10

    MATH  Google Scholar 

  • Chesneaux JM (1988) Modélisation et conditions de validite de la méthode CESTAC. C R Acad Sci Paris Sér I Math 307:417–422

    MathSciNet  MATH  Google Scholar 

  • Chesneaux JM, Vignes J (1992) Les fondements de larithmetique stochastique. C R Acad Sci Paris Sér.I Math 315:1435–1440

    MathSciNet  MATH  Google Scholar 

  • Chesneaux JM (1990) CADNA: an ADA tool for round-off errors analysis and for numerical debugging. In: ADA in Aerospace, Barcelone, Spain

  • Dubois D, Prade H (1982) Toward fuzzy differential calculus: Part 3, differentiation. Fuzzy Sets Syst 8:225–233

    Article  MATH  Google Scholar 

  • Fariborzi Araghi MA (2002) The methods of valid implementation of the numerical algorithms, Phd dissertation thesis, Science and Resaerch Branch, Islamic Azad university

  • Fariborzi Araghi MA, Barzegar Kelishami H (2016) Dynamical control of accuracy in the fuzzy Runge-Kutta methods to estimate the solution of a fuzzy differential equation. J Fuzzy Set Valued Anal 1:71–84

    Article  MATH  Google Scholar 

  • Gomes LT, Barros LC, Bede B (2015) Fuzzy differential equations in various approaches. Springer, Berlin

    Book  MATH  Google Scholar 

  • Isaacson E, Keller HB (1966) Analysis of numerical methods. Wiley, New York

    MATH  Google Scholar 

  • Jezequel F (2005) Controle dynamique de methodes dapproximation. Universite Pierre et Marie Curie, Paris, Habilitation a diriger des recherches

  • Jezequel F, Lamotte J-L, Chubach O (2013) Parallelization of discrete stochastic arithmetic on multicore architectures. In: 10th International conference on information technology: new generations (ITNG), Las Vegas, Nevada (USA)

  • Jezequel F, Chesneaux JM (2008) CADNA: a library for estimating round-off error propagation. Comput Phys Commun 178:933–955

    Article  MATH  Google Scholar 

  • Jezequel F, Rico F, Chesneaux J-M, Charikhi M (2006) Reliable computation of a multiple integral involved in the neutron star theory. Math Comput Simul 71(1):44–61

    Article  MathSciNet  MATH  Google Scholar 

  • Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics I: surface approximations and partial derivative estimates. Comput Math Appl 19:127–145

    Article  MathSciNet  MATH  Google Scholar 

  • Kansa EJ (1990) Multiquadrics-a scattered data approximation scheme with applications to computational fluid dynamics II: solutions to parabolic, hyperbolic, and elliptic partial differential equations. Comput Math Appl 19:147–161

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O (1990) The Cauchy problem for fuzzy differential equations. Fuzzy Sets Syst. 35:389–396

    Article  MathSciNet  MATH  Google Scholar 

  • Kaleva O (2006) A note on fuzzy differential equations. Nonlinear Anal 64:895–900

    Article  MathSciNet  MATH  Google Scholar 

  • Khojasteh Salkuyeh D, Toutounian F, Shariat Yazdi H (2008) A procedure with stepsize control for solving \(n\) one-dimensional IVPs. Math Comput Simul 79:167–176

    Article  MathSciNet  MATH  Google Scholar 

  • Ma M, Friedman M, Kandel A (1999) Numerical solution of fuzzy differential equations. Fuzzy Sets Syst 105:133–138

    Article  MathSciNet  MATH  Google Scholar 

  • Mitra S, Basak J (2001) FRBF: a fuzzy radial basis function network. Neural Comput Appl 10:244–252

    Article  MATH  Google Scholar 

  • Luh L-T (2014) The mystery of the shape parameter IV. Eng Anal Bound Elem 48:24–31

    Article  MathSciNet  MATH  Google Scholar 

  • Rabiei F, Ismail F, Ahmadian A, Salahshour S (2013) Numerical solution of second-order fuzzy differential equation using improved Runge-Kutta Nystrom method. Math Prob Eng ID: 803462, 10 p

  • Behzadi ShS, Vahdani B, Allahviranloo T, Abbasbandy S (2016) Application of fuzzy Picard method for solving fuzzy quadratic Riccati and fuzzy Painlevé I equations. Appl Math Mod 40:8125–8137

    Article  MATH  Google Scholar 

  • Sarra SA, Sturgill D (2009) A random variable shape parameter strategy for radial basis function approximation methods. Eng Anal Bound Elem 33:1239–1245

    Article  MathSciNet  MATH  Google Scholar 

  • Schaback R (1995) Error estimates and condition numbers for radial basis function interpolation. AICM 3:251–264

    MathSciNet  MATH  Google Scholar 

  • Scott NS, Jezequel F, Denis C, Chesneaux J-M (2007) Numerical health check for scientific codes: the CADNA approach. Comput Phys Commun 176(8):507–521

    Article  Google Scholar 

  • Seikkala S (1987) On the fuzzy initial value problem. Fuzzy Sets Syst 24:319–330

    Article  MathSciNet  MATH  Google Scholar 

  • Stefanini L (July 2007) Generalized LU-fuzzy derivative and numerical solution of fuzzy differential equations. In: Proceedings of the 2007 IEEE international conference on fuzzy systems, London, pp. 710–715

  • Vignes J (1993) A stochastic arithmetic for reliable scientific computation. Math Comput Simul 35:233–261

    Article  MathSciNet  Google Scholar 

  • Vignes J (1986) Zero mathematique et zero informatique. Compt Rend lAcad Sci Ser I Math 303:997–1000 also: La Vie des Sciences, 4 (1) (1987) 1-13

    MathSciNet  MATH  Google Scholar 

  • Vignes J (2004) Discrete stochastic arithmetic for validating results of numerical software. Numer Algorith 37:377–390

    Article  MathSciNet  MATH  Google Scholar 

  • Vignes J, La Porte M (1974) Error analysis in computing. In: Information processing 1974, North-Holland, pp. 610–614

  • Vignes J (1996) A stochastic approach to the analysis of round-off error propagation. A survey of the CESTAC method. In: Proceedings of the 2nd real numbers and computers conference, Marseille, France, pp. 233–251

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Fariborzi Araghi.

Ethics declarations

Conflict of Interest

Author A declares that he has no conflict of interest. Author B declares that he has no conflict of interest. Author C declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barzegar Kelishami, H., Fariborzi Araghi, M.A. & Amirfakhrian, M. Applying the fuzzy CESTAC method to find the optimal shape parameter in solving fuzzy differential equations via RBF-meshless methods. Soft Comput 24, 15655–15670 (2020). https://doi.org/10.1007/s00500-020-04890-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04890-z

Keywords

Navigation