Skip to main content
Log in

A fuzzy variational model for segmentation of images having intensity inhomogeneity and slight texture

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Segmentation of real images having unwanted outliers, inhomogeneity or complex background is always very challenging for active contour models. In this paper, we propose a novel model for segmentation of such type of images. The proposed model is based on fuzzy energy functional, which uses coefficient of variation as a region statistics. The proposed model is convex due to introduction of fuzzy membership functions in the energy functional and hence converges to the absolute minima and avoids local minima. Convexity of the proposed model is proved, and hence, the model is independent of initial placement of the contour. Experimental results of the proposed model are compared with other state-of-the-art existing models both qualitatively and quantitatively. For quantitative comparison, we have used Jaccard similarity index and computational complexity. The proposed model is tested on various data sets containing noisy images, images having intensity inhomogeneity and slight texture. In all experimental results, performance of the proposed model can be seen in the experimental section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali H, Badshah N, Chen K, Khan GA (2016) A variational model with hybrid images data fitting energies for segmentation of images with intensity inhomogeneity. Pattern Recognit 51:27–42

    Article  MATH  Google Scholar 

  • Appleton B, Talbot H (2005) Globally optimal geodesic active contours. J Math Imaging Vis 23(1):67–86

    Article  MathSciNet  Google Scholar 

  • Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations. Springer, New York

    Book  MATH  Google Scholar 

  • Badshah N, Chen K, Ali H, Murtaza G (2012) A coefficient of variation based image selective segmentation model using active contours. East Asian J Appl Math 2(2):150–169

    Article  MathSciNet  MATH  Google Scholar 

  • Balla-Arab S, Gao X, Wang B (2013) A fast and robust level set method for image segmentation using fuzzy clustering and lattice Boltzmann method. IEEE Trans Cybern 43(3):910–920

    Article  Google Scholar 

  • Caselles V, Catte F, Coll T, Dibos F (1993) A geometric model for active contours in image processing. Numer Math 66(1):1–31

    Article  MathSciNet  MATH  Google Scholar 

  • Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79

    Article  MATH  Google Scholar 

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  • Chan TF, Esedoglu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66(5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  • Esedoglu S, Tsai R (2005) Threshold dynamics for the piecewise constant Mumford–Shah functional. J Comput Phys 211(1):367–384

    Article  MathSciNet  MATH  Google Scholar 

  • Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques rgions voisines. Bulletin de la Socit Vaudoise des Sciences Naturelles 37:241–272

    Google Scholar 

  • Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  • Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1996) Conformal curvature flows: from phase transitions to active vision. Arch Ration Mech Anal 134(3):275–301

    Article  MathSciNet  MATH  Google Scholar 

  • Krinidis S, Chatzis V (2009) Fuzzy energy-based active contours. IEEE Trans Image Process 18(12):2747–2755

    Article  MathSciNet  MATH  Google Scholar 

  • Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    Article  MathSciNet  MATH  Google Scholar 

  • Lankton S, Tannenbaum A (2008) Localizing region-based active contours. IEEE Trans Image Process 17(11):2029–2039

    Article  MathSciNet  MATH  Google Scholar 

  • Lee S, Seo JK (2006) Level set-based bimodal segmentation with stationary global minimum. IEEE Trans Image Process 15:2843–2852

    Article  MathSciNet  Google Scholar 

  • Li Y, Feng X (2016) A multiscale image segmentation method. Pattern Recognit 52:332–345

    Article  Google Scholar 

  • Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR), vol 1, pp 430–436

  • Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  MathSciNet  MATH  Google Scholar 

  • Lie J, Lysaker M, Tai XC (2006) A binary level set model and some applications for Mumford–Shah image segmentation. IEEE Trans Image Process 15(4):1171–1181

    Article  MATH  Google Scholar 

  • Lin TY, Maire M, Belongie S, Hays J, Perona P, Ramanan D, Dollar P, Zitnick CL (2014) Microsoft COCO: common objects in context. In: Proceedings of European conference on computer vision, pp 740–755

  • Liu Z, Guo B (2006) New numerical algorithms for the nonlinear diffusion model of image denoising and segmentation. Appl Math Comput 11(2):380–389

    MathSciNet  MATH  Google Scholar 

  • Malladi R, Sethian JA, Vemuri BC (1993) Topology-independent shape modeling scheme. In: SPIE’s 1993 international symposium on optics, imaging, and instrumentation. International Society for Optics and Photonics, pp 246–258

  • Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the computer vision. ICCV 2001. Eighth IEEE international conference on IEEE, vol 2, pp 416–423

  • Mena JB, Malpica JA (2005) Color image segmentation based on three levels of texture statistical evaluation. Appl Math Comput 161(1):1–17

    MathSciNet  MATH  Google Scholar 

  • Mikula K, Sgallari F (2003) Semi-implicit finite volume scheme for image processing in 3D cylindrical geometry. J Comput Appl Math 161(1):119–132

    Article  MathSciNet  MATH  Google Scholar 

  • Mondal A, Ghosh S, Ghosh A (2016) Robust global and local fuzzy energy based active contour for image segmentation. Appl Soft Comput 47:191–215

    Article  Google Scholar 

  • Mora M, Tauber C, Batatia H (2005) Robust level set for heart cavities detection in ultrasound images. Comput Cardiol 32:235–238

    Google Scholar 

  • Morel JM, Solimini S (2012) Variational methods in image segmentation: with seven image processing experiments. Springer, New York

    MATH  Google Scholar 

  • Mumford D, Shah J (1989) Optimal approximation by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  MATH  Google Scholar 

  • Nayak J, Naik B, Behera HS (2015) Fuzzy C-means (FCM) clustering algorithm: a decade review from 2000 to 2014. Comput Intell Data Min 2:133–149

    Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Paragios N, Deriche R (2000) Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Mach Intell 22(3):266–280

    Article  Google Scholar 

  • Paragios N, Chen Y, Faugeras O (2005) Handbook of mathematical models in computer vision. Secaucus

  • Patra S, Gautam R, Singla A (2014) A novel context sensitive multilevel thresholding for image segmentation. Appl Soft Comput 23(12):2–127

    Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods evolving interfaces in computational geometry. Fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Song B, Chan T (2002) A fast algorithm for level set based optimization. UCLA CamReport 2(68)

  • Vese LA, Chan TF (2002) A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis 50(3):271–293

    Article  MATH  Google Scholar 

  • Wang XF, Huang DS, Xu H (2010) An efficient local Chan–Vese model for image segmentation. Pattern Recognit 43(3):603–618

    Article  MATH  Google Scholar 

  • Wang XF, Min H, Zhang YG (2015) Multi-scale local region based level set method for image segmentation in the presence of intensity inhomogeneity. Neurocomputing 151:1086–1098

    Article  Google Scholar 

  • Wu Y, He C (2015) A convex variational level set model for image segmentation. Sig Process 106:123–133

    Article  Google Scholar 

  • Wu Y, Ma W, Gong M, Li H, Jiao L (2015) Novel fuzzy active contour model with kernel metric for image segmentation. Appl Soft Comput 34:301–311

    Article  Google Scholar 

  • Yezzi A, Kichenassamy S, Kumar A, Olver P, Tannenbaum A (1997) A geometric snake model for segmentation of medical imagery. IEEE Trans Med Imaging 16(2):199–209

    Article  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  MATH  Google Scholar 

  • Zhang T, Freedman D (2003) Tracking objects using density matching and shape priors. In: Proceedings ninth IEEE international conference on computer vision, pp 1056–1062

  • Zhang KH, Song HH, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recognit 43(4):1199–1206

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noor Badshah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, A., Badshah, N. & Ali, H. A fuzzy variational model for segmentation of images having intensity inhomogeneity and slight texture. Soft Comput 24, 15491–15506 (2020). https://doi.org/10.1007/s00500-020-04878-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-020-04878-9

Keywords

Navigation