Ackermann MR, Blömer J, Sohler C (2008) Clustering for metric and non-metric distance measures. In: Proceedings of the nineteenth annual ACM-SIAM symposium on discrete algorithms, Philadelphia, PA, USA, SODA ’08, pp 799–808
Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305
MathSciNet
MATH
Google Scholar
Birattari M (2009) Tuning metaheuristics: a machine learning perspective, 1st edn. Springer Publishing Company, Incorporated, Berlin
Book
Google Scholar
Birattari M, Stützle T, Paquete L, Varrentrapp K (2002) A racing algorithm for configuring metaheuristics. In: Proceedings of the 4th annual conference on genetic and evolutionary computation, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, GECCO’02, pp 11–18
Burke EK, Gustafson S, Kendall G (2004) Diversity in genetic programming: an analysis of measures and correlation with fitness. IEEE Trans Evol Comput 8(1):47–62
Article
Google Scholar
Cava WL, Silva S, Danai K, Spector L, Vanneschi L, Moore JH (2019) Multidimensional genetic programming for multiclass classification. Swarm Evol Comput 44:260–272
Article
Google Scholar
De Rainville FM, Fortin FA, Gardner MA, Parizeau M, Gagné C (2012) Deap: A python framework for evolutionary algorithms. In: Proceedings of the 14th annual conference companion on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO ’12, pp 85–92
Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evol Comput 9(2):159–195
Article
Google Scholar
Hernández-Beltran JE, Díaz-Ramírez VH, Trujillo L, Legrand P (2019) Design of estimators for restoration of images degraded by haze using genetic programming. Swarm Evol Comput 44:49–63
Article
Google Scholar
Juárez-Smith P, Trujillo L (2016) Integrating local search within neat-gp. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion, ACM, New York, NY, USA, GECCO ’16 Companion, pp 993–996
Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187
Article
Google Scholar
Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge
MATH
Google Scholar
Langdon WB, Poli R (2010) Foundations of genetic programming, 1st edn. Springer Publishing Company, Incorporated, Berlin
MATH
Google Scholar
López-Ibáñez M, Dubois-Lacoste J, Pérez Cáceres L, Birattari M Stützle (2016) The irace packag: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58
MathSciNet
Article
Google Scholar
López-López VR, Trujillo L, Legrand P (2018) Applying genetic improvement to a genetic programming library in c++. Soft Comput 23:11593–11609
Article
Google Scholar
McDermott J, White DR, Luke S, Manzoni L, Castelli M, Vanneschi L, Jaskowski W, Krawiec K, Harper R, De Jong K, O’Reilly UM (2012) Genetic programming needs better benchmarks. In: Proceedings of the 14th annual conference on genetic and evolutionary computation, ACM, New York, NY, USA, GECCO ’12, pp 791–798
Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, Berlin
Book
Google Scholar
Neumüller C, Wagner S, Kronberger G, Affenzeller M (2012) Parameter meta-optimization of metaheuristic optimization algorithms. In: Proceedings of the 13th international conference on computer aided systems theory–volume part I, Springer, Berlin, EUROCAST’11, pp 367–374
Olson RS, La Cava W, Orzechowski P, Urbanowicz RJ, Moore JH (2017) Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData Min 10(1):36
Article
Google Scholar
Sipper M, Fu W, Ahuja K, Moore JH (2018) Investigating the parameter space of evolutionary algorithms. BioData Min 11(1):2
Article
Google Scholar
Stanley KO, Miikkulainen R (2002) Evolving neural networks through augmenting topologies. Evol Comput 10(2):99–127
Article
Google Scholar
Trujillo L, Muñoz L, Galván-López E, Silva S (2016) neat genetic programming: controlling bloat naturally. Inf Sci 333:21–43
Article
Google Scholar
Vanneschi L, Castelli M, Scott K, Trujillo L (2019) Alignment-based genetic programming for real life applications. Swarm Evol Comput 44:840–851
Article
Google Scholar
Vladislavleva EJ, Smits GF, den Hertog D (2009) Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans Evol Comput 13(2):333–349
Article
Google Scholar