Skip to main content
Log in

Supply chain management under uncertainty with the combination of fuzzy multi-objective planning and real options approaches

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

The concentration of this paper is to measure and break supply chain planning decisions under market and/or technical uncertainty. A three-level supply chain with manufacturers–distributors–customer’s loops is considered that customer demands, percent of back products from customers and shipping time of products from distributors to customers are considered as fuzzy variables. The main approach considers suppliers and distributor selection and determines the affected customers in the system problems simultaneously under uncertain conditions. The objects of the proposed model are maximizing the quality of products and income and minimizing the total cost and the shipping time from distributors to customers. Also, in the proposed model we consider some constraints such as lack of orders, production capacity and customer demands. Also, a two-organize, stochastic programming methodology is proposed for joining request vulnerability in multisite midterm store network arranging issues. The assessment of the normal second-stage expenses is accomplished by expository reconciliation yielding an equivalent convex mixed-integer nonlinear problem. At long last, a real options-based valuation (ROV) system for supporting under vulnerability is produced. Multistage stochastic writing computer programs are utilized to fuse vulnerability and a quantitative correlation of the ROV approach, and the customary net-present-value approach is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdulaal A, Moghaddass R, Asfour S (2017) Two-stage discrete-continuous multi-objective load optimization: an industrial consumer utility approach to demand response. Appl Energy 206:206–221

    Article  Google Scholar 

  • Ahmed S, Sahinidis NV (1998) Robust process planning under uncertainty. Ind Eng Chem Res 37(5):1883–1892

    Article  Google Scholar 

  • Alexander AE, Walker HL (2016) Decision making in sustainable supply chain management: cross-sector case studies of implementation. http://orca.cf.ac.uk/id/eprint/87181

  • Alshehri K, Bose S, Başar T (2017) Cash-settled options for wholesale electricity markets. arXiv preprint arXiv:1704.00369

  • Amid A, Ghodsypour S, O’Brien C (2006) Fuzzy multiobjective linear model for supplier selection in a supply chain. Int J Prod Econ 104(2):394–407

    Article  Google Scholar 

  • Amiri A (2006) Designing a distribution network in a supply chain system: formulation and efficient solution procedure. Eur J Oper Res 171(2):567–576

    Article  MATH  Google Scholar 

  • Amram M, Kulatilaka N (1999) Disciplined decisions: aligning strategy with the financial markets. Harvard Bus Rev 77(1):95–104

    Google Scholar 

  • Anupindi R et al (1999) Quantitative models for supply chain management. Kluwer Academic Publishers, Norwell

    Google Scholar 

  • Aswath D (2001) Corporate finance: theory and practice, International edn. Willey, New York

    Google Scholar 

  • Bakir MA, Byrne MD (1998) Stochastic linear optimisation of an MPMP production planning model. Int J Prod Econ 55(1):87–96

    Article  Google Scholar 

  • Baykasoǧlu A, Göçken T (2008) A review and classification of fuzzy mathematical programs. J Intell Fuzzy Syst 19(3):205–229

    MATH  Google Scholar 

  • Beier S et al (2017) Supply chain management using mobile devices. Google Patents

  • Bellman RE, Zadeh LA (1970) Decision-making in a fuzzy environment. Manag Sci 17(4):B-141–B-164

    Article  MathSciNet  Google Scholar 

  • Beske P, Land A, Seuring S (2014) Sustainable supply chain management practices and dynamic capabilities in the food industry: a critical analysis of the literature. Int J Prod Econ 152:131–143

    Article  Google Scholar 

  • Bessler SA, Veinott AF (1966) Optimal policy for a dynamic multi-echelon inventory model. Naval Res Logist (NRL) 13(4):355–389

    Article  MathSciNet  MATH  Google Scholar 

  • Bidhandi HM, Yusuff RM (2011) Integrated supply chain planning under uncertainty using an improved stochastic approach. Appl Math Model 35(6):2618–2630

    Article  MathSciNet  MATH  Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654

    Article  MathSciNet  MATH  Google Scholar 

  • Bollapragada S, Akella R, Srinivasan R (1998) Centralized ordering and allocation policies in a two-echelon system with non-identical warehouses. Eur J Oper Res 106(1):74–81

    Article  Google Scholar 

  • Brandenburg M et al (2014) Quantitative models for sustainable supply chain management: developments and directions. Eur J Oper Res 233(2):299–312

    Article  MathSciNet  MATH  Google Scholar 

  • Burgess TF, Grimshaw P, Huaccho Huatuco L, Shaw NE (2017) Mapping the operations and supply chain management field: a journal governance perspective. Int J Oper Prod Manag 37(7):898–926

    Article  Google Scholar 

  • Busse C et al (2017) Under the umbrella of sustainable supply chain management: emergent solutions to real-world problems. Int J Phys Distrib Logist Manag 47(5):342–343

    Article  Google Scholar 

  • Cardin M-A et al (2017) An approach for analyzing and managing flexibility in engineering systems design based on decision rules and multistage stochastic programming. IISE Trans 49(1):1–12

    Article  Google Scholar 

  • Chan F, Chan H (2004) A new model for manufacturing supply chain networks: a multiagent approach. Proc Inst Mech Eng B J Eng Manuf 218(4):443–454

    Article  Google Scholar 

  • Chen C-L, Lee W-C (2004) Optimization of multi-echelon supply chain networks with uncertain sales prices. J Chem Eng Jpn 37(7):822–834

    Article  Google Scholar 

  • Chen C-L, Wang B-W, Lee W-C (2003) Multiobjective optimization for a multienterprise supply chain network. Ind Eng Chem Res 42(9):1879–1889

    Article  Google Scholar 

  • Chiang W-YK, Monahan GE (2005) Managing inventories in a two-echelon dual-channel supply chain. Eur J Oper Res 162(2):325–341

    Article  MATH  Google Scholar 

  • Chung Y et al (2018) Improved neighborhood search for collaborative filtering. Int J Fuzzy Log Intell Syst 18(1):29–40

    Article  Google Scholar 

  • Clark AJ, Scarf H (1960) Optimal policies for a multi-echelon inventory problem. Manag Sci 6(4):475–490

    Article  Google Scholar 

  • Clay R, Grossmann I (1997) A disaggregation algorithm for the optimization of stochastic planning models. Comput Chem Eng 21(7):751–774

    Article  Google Scholar 

  • Cole RA, Floros IV, Ivanov VI (2016) Reducing uncertainty through a two-stage IPO. Working paper, available at SSRN 2808852

  • Costantino N, Pellegrino R, Tauro D (2016) Commodity price volatility mitigation in supply chain risk management: real options to assess the value of flexibility-driven strategies. In: 2016 IEEE international conference on industrial engineering and engineering management (IEEM). IEEE

  • Cox JC, Ross SA, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 7(3):229–263

    Article  MathSciNet  MATH  Google Scholar 

  • Dabestani R et al (2017) Evaluation and prioritization of service quality dimensions based on gap analysis with analytic network process. Int J Qual Reliab Manag 34(4):530–548

    Article  Google Scholar 

  • Dantzig GB (1955) Upper bounds, secondary constraints, and block triangularity in linear programming. Econom J Econom Soc 174–183

  • Dantzig GB, Orden A, Wolfe P (1955) The generalized simplex method for minimizing a linear form under linear inequality restraints. Pac J Math 5(2):183–195

    Article  MathSciNet  MATH  Google Scholar 

  • Devalkar SK, Anupindi R, Sinha A (2017) Dynamic risk management of commodity operations: model and analysis. Manuf Serv Oper Manag 20(2):317–332

    Article  Google Scholar 

  • Diks EB, De Kok A (1998) Optimal control of a divergent multi-echelon inventory system. Eur J Oper Res 111(1):75–97

    Article  MATH  Google Scholar 

  • Dimitriadis A, Shah N, Pantelides C (1997) RTN-based rolling horizon algorithms for medium term scheduling of multipurpose plants. Comput Chem Eng 21:S1061–S1066

    Article  Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, Princeton

    Book  Google Scholar 

  • Dong L, Lee HL (2003) Optimal policies and approximations for a serial multiechelon inventory system with time-correlated demand. Oper Res 51(6):969–980

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Fargier H, Fortemps P (2003) Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge. Eur J Oper Res 147(2):231–252

    Article  MathSciNet  MATH  Google Scholar 

  • Eppen G, Schrage L (1981) Centralized ordering policies in a multi-warehouse system with lead times and random demand. Multi-level Prod Inventory Control Syst Theory Pract 16:51–67

    MATH  Google Scholar 

  • Escudero LF et al (1993) Production planning via scenario modelling. Ann Oper Res 43(6):309–335

    Article  MathSciNet  MATH  Google Scholar 

  • Eskigun E et al (2007) Outbound supply chain network design with mode selection and lead time considerations. Naval Res Logist (NRL) 54(3):282–300

    Article  MathSciNet  MATH  Google Scholar 

  • Farahani RZ, Elahipanah M (2008) A genetic algorithm to optimize the total cost and service level for just-in-time distribution in a supply chain. Int J Prod Econ 111(2):229–243

    Article  Google Scholar 

  • Fredendall LD, Letmathe P, Uebe-Emden N (2016) Supply chain management practices and intellectual property protection in China: perceptions of Mittelstand managers. Int J Oper Prod Manag 36(2):135–163

    Article  Google Scholar 

  • García-Flores R, Wang XZ (2002) A multi-agent system for chemical supply chain simulation and management support. OR Spectr 24(3):343–370

    Article  MathSciNet  MATH  Google Scholar 

  • Georgiadis MC, Pistikopoulos EN (1999) An integrated framework for robust and flexible process systems. Ind Eng Chem Res 38(1):133–143

    Article  Google Scholar 

  • Gholamian N, Mahdavi I, Tavakkoli-Moghaddam R (2016) Multi-objective multi-product multi-site aggregate production planning in a supply chain under uncertainty: fuzzy multi-objective optimisation. Int J Comput Integr Manuf 29(2):149–165

    Google Scholar 

  • Giannoccaro I, Pontrandolfo P, Scozzi B (2003) A fuzzy echelon approach for inventory management in supply chains. Eur J Oper Res 149(1):185–196

    Article  MathSciNet  MATH  Google Scholar 

  • Goldstein MA, Kwan A, Philip R (2018) High-frequency trading strategies. Available at SSRN 2973019

  • Gonzalez EDS, Jabbour CJ (2017) Advances in supply chain and logistics management for a more sustainable society: an introduction. J Oper Supply Chain Manag 10(1):1–2

    Article  Google Scholar 

  • Gumus AT, Guneri AF (2009) A multi-echelon inventory management framework for stochastic and fuzzy supply chains. Expert Syst Appl 36(3):5565–5575

    Article  Google Scholar 

  • Gupta A, Maranas CD (2000) A two-stage modeling and solution framework for multisite midterm planning under demand uncertainty. Ind Eng Chem Res 39(10):3799–3813

    Article  Google Scholar 

  • Gupta A, Maranas CD (2001) Multiperiod planning of multisite supply chains under demand uncertainty. Comput Aided Chem Eng 9:871–876

    Article  Google Scholar 

  • Gupta A, Maranas CD, McDonald CM (2000) Mid-term supply chain planning under demand uncertainty: customer demand satisfaction and inventory management. Comput Chem Eng 24(12):2613–2621

    Article  Google Scholar 

  • Hull JC (2006) Options, futures, and other derivatives. Pearson Education India, Bengaluru

    MATH  Google Scholar 

  • Ierapetritou MG, Pistikopoulos EN (1996) Batch plant design and operations under uncertainty. Ind Eng Chem Res 35(3):772–787

    Article  Google Scholar 

  • Iyer RR, Grossmann IE (1998) A bilevel decomposition algorithm for long-range planning of process networks. Ind Eng Chem Res 37(2):474–481

    Article  Google Scholar 

  • Jayaraman V, Pirkul H (2001) Planning and coordination of production and distribution facilities for multiple commodities. Eur J Oper Res 133(2):394–408

    Article  MATH  Google Scholar 

  • Jiang Y et al (2017) Production planning problems with joint service-level guarantee: a computational study. Int J Prod Res 55(1):38–58

    Article  MathSciNet  Google Scholar 

  • Johns W, Marketos G, Rippin D (1978) The optimal design of chemical plant to meet time-varying demands in the presence of technical and commercial uncertainty. Trans Inst Chem Eng 56:249

    Google Scholar 

  • Kalchschmidt M, Zotteri G, Verganti R (2003) Inventory management in a multi-echelon spare parts supply chain. Int J Prod Econ 81:397–413

    Article  Google Scholar 

  • Karimi IA, McDonald CM (1997) Planning and scheduling of parallel semicontinuous processes. 2. Short-term scheduling. Ind Eng Chem Res 36(7):2701–2714

    Article  Google Scholar 

  • Khemiri R, Elbedoui-Maktouf K, Grabot B, Zouari B (2017) A fuzzy multi-criteria decision-making approach for managing performance and risk in integrated procurement–production planning. Int J Prod Res 55(18):5305–5329

    Article  Google Scholar 

  • Kirchoff JF, Tate WL, Mollenkopf DA (2016) The impact of strategic organizational orientations on green supply chain management and firm performance. Int J Phys Distrib Logist Manag 46(3):269–292

    Article  Google Scholar 

  • Krasko V, Rebennack S (2017) Two-stage stochastic mixed-integer nonlinear programming model for post-wildfire debris flow hazard management: mitigation and emergency evacuation. Eur J Oper Res 263(1):265–282

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar M, Vrat P, Shankar R (2004) A fuzzy goal programming approach for vendor selection problem in a supply chain. Comput Ind Eng 46(1):69–85

    Article  Google Scholar 

  • Lee BK, Kang KH, Lee YH (2008) Decomposition heuristic to minimize total cost in a multi-level supply chain network. Comput Ind Eng 54(4):945–959

    Article  Google Scholar 

  • Liang T-F (2008) Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Comput Ind Eng 55(3):676–694

    Article  Google Scholar 

  • Lim MK, Tseng M-L, Tan KH, Bui TD (2017) Knowledge management in sustainable supply chain management: improving performance through an interpretive structural modelling approach. J Clean Prod 162:806–816

    Article  Google Scholar 

  • Lin C-WR, Chen H-YS (2003) Dynamic allocation of uncertain supply for the perishable commodity supply chain. Int J Prod Res 41(13):3119–3138

    Article  MATH  Google Scholar 

  • Liu S, Kao C (2004) Solving fuzzy transportation problems based on extension principle. Eur J Oper Res 153(3):661–674

    Article  MathSciNet  MATH  Google Scholar 

  • Liu ML, Sahinidis NV (1995) Computational trends and effects of approximations in an MILP model for process planning. Ind Eng Chem Res 34(5):1662–1673

    Article  Google Scholar 

  • Liu ML, Sahinidis NV (1996) Optimization in process planning under uncertainty. Ind Eng Chem Res 35(11):4154–4165

    Article  Google Scholar 

  • Lu Z, Bostel N (2007) A facility location model for logistics systems including reverse flows: the case of remanufacturing activities. Comput Oper Res 34(2):299–323

    Article  MathSciNet  MATH  Google Scholar 

  • Luenberger DG (1997) Investment science. OUP Catalogue

  • Majidi-Qadikolai M, Baldick R (2016) Stochastic transmission capacity expansion planning with special scenario selection for integrating $ N − 1$ contingency analysis. IEEE Trans Power Syst 31(6):4901–4912

    Article  Google Scholar 

  • Mangla SK, Kumar P, Barua MK (2014) Flexible decision approach for analysing performance of sustainable supply chains under risks/uncertainty. Glob J Flex Syst Manag 15(2):113–130

    Article  Google Scholar 

  • Mason SP, Merton RC (1985) The role of contingent claims analysis in corporate finance. In: Altman EI, Subrahmanyam MG (eds) Recent advances in corporate finance. Richard D. Irwin, Homewood

    Google Scholar 

  • McDonald CM, Karimi IA (1997) Planning and scheduling of parallel semicontinuous processes. 1. Production planning. Ind Eng Chem Res 36(7):2691–2700

    Article  Google Scholar 

  • Minguez R, García-Bertrand R, Arroyo JM, Alguacil N (2017) On the solution of large-scale robust transmission network expansion planning under uncertain demand and generation capacity. IEEE Trans Power Syst 33(2):1242–1251

    Article  Google Scholar 

  • Myers SC (1984) Finance theory and financial strategy. Interfaces 14(1):126–137

    Article  Google Scholar 

  • Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York, p 118

    MATH  Google Scholar 

  • Nobil AH, Niaki STA, Cárdenas-Barrón LE (2017) Some observations on “location and allocation decisions for multi-echelon supply chain network: a multi-objective evolutionary approach”. Int J Appl Comput Math 3(2):1561–1563

    Article  Google Scholar 

  • Norton LC, Grossmann IE (1994) Strategic planning model for complete process flexibility. Ind Eng Chem Res 33(1):69–76

    Article  Google Scholar 

  • O’Driscoll PJ (2017) A modern two-stage stochastic programming portfolio model for an oil refinery with financial risk management. Int J Oper Res 28(1):121–140

    Article  MathSciNet  MATH  Google Scholar 

  • Oelze N et al (2016) Sustainable development in supply chain management: the role of organizational learning for policy implementation. Bus Strategy Environ 25(4):241–260

    Article  Google Scholar 

  • Olivares-Benitez E, González-Velarde JL, Ríos-Mercado RZ (2012) A supply chain design problem with facility location and bi-objective transportation choices. Top 20(3):729–753

    Article  MathSciNet  MATH  Google Scholar 

  • Papageorgiou LG, Pantelides CC (1996) Optimal campaign planning/scheduling of multipurpose batch/semicontinuous plants. 1. Mathematical formulation. Ind Eng Chem Res 35(2):488–509

    Article  Google Scholar 

  • Peidro D et al (2009) Fuzzy optimization for supply chain planning under supply, demand and process uncertainties. Fuzzy Sets Syst 160(18):2640–2657

    Article  MathSciNet  MATH  Google Scholar 

  • Petkov SB, Maranas CD (1997) Multiperiod planning and scheduling of multiproduct batch plants under demand uncertainty. Ind Eng Chem Res 36(11):4864–4881

    Article  Google Scholar 

  • Petkov SB, Maranas CD (1998) Design of single-product campaign batch plants under demand uncertainty. AIChE J 44(4):896–911

    Article  Google Scholar 

  • Petrovic D, Roy R, Petrovic R (1999) Supply chain modelling using fuzzy sets. Int J Prod Econ 59(1):443–453

    Article  Google Scholar 

  • Pishvaee MS, Torabi SA (2010) A possibilistic programming approach for closed-loop supply chain network design under uncertainty. Fuzzy Sets Syst 161(20):2668–2683

    Article  MathSciNet  MATH  Google Scholar 

  • Pistikopoulos E, Ierapetritou M (1995) Novel approach for optimal process design under uncertainty. Comput Chem Eng 19(10):1089–1110

    Article  Google Scholar 

  • Rakowski D, Shirley SE, Stark JR (2017) Tail-risk hedging, dividend chasing, and investment constraints: the use of exchange-traded notes by mutual funds. J Emp Financ 44:91–107

    Article  Google Scholar 

  • Rau H, Wu M-Y, Wee H-M (2003) Integrated inventory model for deteriorating items under a multi-echelon supply chain environment. Int J Prod Econ 86(2):155–168

    Article  Google Scholar 

  • Reinhart H-J (1987) Design of flexible multi-product plants: a new procedure for optimal equipment sizing under uncertainty. AIChE, New York

    Google Scholar 

  • Rezaee A et al (2017) Green supply chain network design with stochastic demand and carbon price. Ann Oper Res 250(2):463–485

    Article  MathSciNet  MATH  Google Scholar 

  • Ritchken P, Rabinowitz G (1988) Capital budgeting using contingent claims analysis: a tutorial. Adv Futures Options Res 3:119–143

    Google Scholar 

  • Sahinidis N, Grossmann IE (1991a) MINLP model for cyclic multiproduct scheduling on continuous parallel lines. Comput Chem Eng 15(2):85–103

    Article  Google Scholar 

  • Sahinidis N, Grossmann IE (1991b) Multiperiod investment model for processing networks with dedicated and flexible plants. Ind Eng Chem Res 30(6):1165–1171

    Article  Google Scholar 

  • Sahinidis N, Grossmann IE (1991c) Reformulation of multiperiod MILP models for planning and scheduling of chemical processes. Comput Chem Eng 15(4):255–272

    Article  Google Scholar 

  • Sahinidis N, Grossmann IE (1992) Reformulation of the multiperiod MILP model for capacity expansion of chemical processes. Oper Res 40(1-supplement-1):S127–S144

    Article  MATH  Google Scholar 

  • Sahinidis N et al (1989) Optimization model for long range planning in the chemical industry. Comput Chem Eng 13(9):1049–1063

    Article  Google Scholar 

  • Sakawa M (1993) Fuzzy sets and interactive multiobjective optimization. Plenum Press, New York

    Book  MATH  Google Scholar 

  • Schachter J (2016) A real options approach to valuing flexibility in demand-side response operations and investments under uncertainty. The University of Manchester, Manchester

    Google Scholar 

  • Shah N, Pantelides CC (1992) Design of multipurpose batch plants with uncertain production requirements. Ind Eng Chem Res 31(5):1325–1337

    Article  Google Scholar 

  • Shah N, Pantelides C, Sargent R (1993) A general algorithm for short-term scheduling of batch operations—II. Computational issues. Comput Chem Eng 17(2):229–244

    Article  Google Scholar 

  • Snyder LV et al (2016) OR/MS models for supply chain disruptions: a review. IIE Trans 48(2):89–109

    Article  Google Scholar 

  • Sox CR et al (1999) A review of the stochastic lot scheduling problem. Int J Prod Econ 62(3):181–200

    Article  Google Scholar 

  • Straub DA, Grossmann IE (1990) Integrated stochastic metric of flexibility for systems with discrete state and continuous parameter uncertainties. Comput Chem Eng 14(9):967–985

    Article  Google Scholar 

  • Straub DA, Grossmann IE (1993) Design optimization of stochastic flexibility. Comput Chem Eng 17(4):339–354

    Article  Google Scholar 

  • Subrahmanyam S, Pekny JF, Reklaitis GV (1994) Design of batch chemical plants under market uncertainty. Ind Eng Chem Res 33(11):2688–2701

    Article  Google Scholar 

  • Swanson D et al (2017) Applying theories from other disciplines to logistics and supply chain management: a systematic literature review. Transp J 56(3):299–356

    Article  MathSciNet  Google Scholar 

  • Syarif A, Yun Y, Gen M (2002) Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach. Comput Ind Eng 43(1):299–314

    Article  Google Scholar 

  • Tavakkoli-Moghaddam R et al (2010) A location within distribution network design problem with flexibility demand. In: Proceeding of world congress on engineering, London

  • Tiwari R, Dharmahr S, Rao J (1987) Fuzzy goal programming an additive model. Fuzzy Sets Syst 24:27–34

    Article  MathSciNet  MATH  Google Scholar 

  • Torabi SA, Hassini E (2008) An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst 159(2):193–214

    Article  MathSciNet  MATH  Google Scholar 

  • Torabi S, Hassini E (2009) Multi-site production planning integrating procurement and distribution plans in multi-echelon supply chains: an interactive fuzzy goal programming approach. Int J Prod Res 47(19):5475–5499

    Article  MATH  Google Scholar 

  • Triantis A, Borison A (2001) Real options: state of the practice. J Appl Corp Finance 14(2):8–24

    Article  Google Scholar 

  • Trigeorgis L (1996) Real options: managerial flexibility and strategy in resource allocation. MIT Press, Cambridge

    Google Scholar 

  • Tsiakis P, Papageorgiou LG (2008) Optimal production allocation and distribution supply chain networks. Int J Prod Econ 111(2):468–483

    Article  Google Scholar 

  • Tsiakis P, Shah N, Pantelides CC (2001) Design of multi-echelon supply chain networks under demand uncertainty. Ind Eng Chem Res 40(16):3585–3604

    Article  Google Scholar 

  • van der Heijden MC (1999) Multi-echelon inventory control in divergent systems with shipping frequencies. Eur J Oper Res 116(2):331–351

    Article  MATH  Google Scholar 

  • Verbiest F, Cornelissens T, Springael J (2017) Design of a chemical batch plant with parallel production lines: plant configuration and cost effectiveness. Comput Chem Eng 99:21–30

    Article  Google Scholar 

  • Wang R-C, Liang T-F (2005) Applying possibilistic linear programming to aggregate production planning. Int J Prod Econ 98(3):328–341

    Article  Google Scholar 

  • Wang G et al (2016) Big data analytics in logistics and supply chain management: certain investigations for research and applications. Int J Prod Econ 176:98–110

    Article  Google Scholar 

  • Wellons HS, Reklaitis G (1989) The design of multiproduct batch plants under uncertainty with staged expansion. Comput Chem Eng 13(1–2):115–126

    Article  Google Scholar 

  • Xueya Z, Sargent R (1996) The optimal operation of mixed production facilities—extensions and improvements. Comput Chem Eng 20:S1287–S1293

    Article  Google Scholar 

  • Yao M, Minner S (2017) Review of multi-supplier inventory models in supply chain management: an update. Available at SSRN 2995134

  • Zegordi SH, Eskandarpour M (2010) Reverse logistic network design with fuzzy demand of return products. In: The 10th Iranian conference on fuzzy systems. Shahid Beheshti University, Tehran

  • Zentner M et al (1994) Practical considerations in using model-based optimization for the scheduling and planning of batch/semicontinuous processes. J Process Control 4(4):259–280

    Article  Google Scholar 

  • Zhang X, Sargent R (1996) The optimal operation of mixed production facilities—a general formulation and some approaches for the solution. Comput Chem Eng 20(6–7):897–904

    Article  Google Scholar 

  • Zhu Q et al (2017) A comparison of regulatory awareness and green supply chain management practices among Chinese and Japanese manufacturers. Bus Strategy Environ 26(1):18–30

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the funding support of the Babol Noshirvani University of Technology through Grant Program No. BNUT/390063/98.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Arasteh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Informed consent

None.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arasteh, A. Supply chain management under uncertainty with the combination of fuzzy multi-objective planning and real options approaches. Soft Comput 24, 5177–5198 (2020). https://doi.org/10.1007/s00500-019-04271-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04271-1

Keywords

Navigation