Skip to main content
Log in

Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Fuzzy entropy clustering (FEC) is a variant of hard c-means clustering which utilizes the concept of entropy. However, the performance of the FEC method is sensitive to the noise and the fuzzy entropy parameter as it gives incorrect clustering and coincident cluster sometimes. In this work, a variant of the FEC method is proposed which incorporates advantage of intuitionistic fuzzy set and kernel distance measure termed as kernel intuitionistic fuzzy entropy c-means (KIFECM). While intuitionistic fuzzy set allows to handle uncertainty and vagueness associated with data, kernel distance measure helps to reveal the inherent nonlinear structures present in data without increasing the computational complexity. In this work, two popular intuitionistic fuzzy sets generators, Sugeno and Yager’s negation function, have been utilized for generating intuitionistic fuzzy sets corresponding to data. The performance of the proposed method has been evaluated over two synthetic datasets, Iris dataset, publicly available simulated human brain MRI dataset and IBSR real human brain MRI dataset. The experimental results show the superior performance of the proposed KIFECM over FEC, FCM, IFCM, UPCA, PTFECM and KFEC in terms of several performance measures such as partition coefficient, partition entropy, average segmentation accuracy, dice score, Jaccard score, false positive ratio and false negative ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alipour S, Shanbehzadeh J (2014) Fast automatic medical image segmentation based on spatial kernel fuzzy c-means on level set method. Mach Vis Appl 25(6):1469–1488

    Google Scholar 

  • Anbeek P, Vincken KL, van Osch MJ, Bisschops RH, van der Grond J (2004) Automatic segmentation of different-sized white matter lesions by voxel probability estimation. Med Image Anal 8(3):205–215

    Google Scholar 

  • Atanassov KT (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    MATH  Google Scholar 

  • Atanassov KT (2003) Intuitionistic fuzzy sets: past, present and future. In: EUSFLAT conference, pp 12–19

  • Balafar M (2014) Fuzzy c-mean based brain mri segmentation algorithms. Artif Intell Rev 41(3):441–449

    Google Scholar 

  • Balafar MA, Ramli AR, Saripan MI, Mashohor S (2010) Review of brain mri image segmentation methods. Artif Intell Rev 33(3):261–274

    Google Scholar 

  • Benaichouche A, Oulhadj H, Siarry P (2013) Improved spatial fuzzy c-means clustering for image segmentation using pso initialization, mahalanobis distance and post-segmentation correction. Dig Signal Process 23(5):1390–1400

    MathSciNet  Google Scholar 

  • Berry MW, Castellanos M (2004) Survey of text mining. Comput Rev 45(9):548

    Google Scholar 

  • Bezdek JC (1981) Objective function clustering. In: Pattern recognition with fuzzy objective function algorithms. Springer, pp 43–93

  • Bezdek JC, Keller JM, Krishnapuram R, Kuncheva LI, Pal NR (1999) Will the real iris data please stand up? IEEE Trans Fuzzy Syst 7(3):368–369

    Google Scholar 

  • Bustince H, Kacprzyk J, Mohedano V (2000) Intuitionistic fuzzy generators application to intuitionistic fuzzy complementation. Fuzzy Sets Syst 114(3):485–504

    MathSciNet  MATH  Google Scholar 

  • Chaira T (2011) A novel intuitionistic fuzzy c means clustering algorithm and its application to medical images. Appl Soft Comput 11(2):1711–1717

    Google Scholar 

  • Chen S, Zhang D (2004) Robust image segmentation using fcm with spatial constraints based on new kernel-induced distance measure. IEEE Trans Syst Man Cybern Part B Cybern 34(4):1907–1916

    Google Scholar 

  • Chen X, Nguyen BP, Chui CK, Ong SH (2016) Automated brain tumor segmentation using kernel dictionary learning and superpixel-level features. In: 2016 IEEE international conference on systems, man, and cybernetics (SMC). IEEE, pp 002547–002552

  • Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15

    Google Scholar 

  • Cocosco CA, Kollokian V, Kwan RKS, Pike GB, Evans AC (1997) Brainweb: online interface to a 3d mri simulated brain database. In: NeuroImage. Citeseer

  • Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput 3:326–334

    MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Google Scholar 

  • Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Hum Genet 7(2):179–188

    Google Scholar 

  • Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32(200):675–701

    MATH  Google Scholar 

  • Graves D, Pedrycz W (2010) Kernel-based fuzzy clustering and fuzzy clustering: a comparative experimental study. Fuzzy Sets Syst 161(4):522–543

    MathSciNet  Google Scholar 

  • Hai-Jun F, Xiao-Hong W, Han-Ping M, Bin W (2011) Fuzzy entropy clustering using possibilistic approach. Procedia Eng 15:1993–1997

    Google Scholar 

  • Held K, Kops ER, Krause BJ, Wells WM, Kikinis R, Muller-Gartner HW (1997) Markov random field segmentation of brain mr images. IEEE Trans Med Imaging 16(6):878–886

    Google Scholar 

  • Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography: 1.Effect of object size. J Comput Assist Tomogr 3(3):299–308

    Google Scholar 

  • Huang CW, Lin KP, Wu MC, Hung KC, Liu GS, Jen CH (2015) Intuitionistic fuzzy c-means clustering algorithm with neighborhood attraction in segmenting medical image. Soft Comput 19(2):459–470

    Google Scholar 

  • Iakovidis D, Pelekis N, Kotsifakos E, Kopanakis I (2008) Intuitionistic fuzzy clustering with applications in computer vision. In: Advanced concepts for intelligent vision systems. Springer, pp 764–774

  • Iman RL, Davenport JM (1980) Approximations of the critical region of the fbietkan statistic. Commun Stat Theory Methods 9(6):571–595

    MATH  Google Scholar 

  • Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv CSUR 31(3):264–323

    Google Scholar 

  • Ji ZX, Sun QS, Xia DS (2014) A framework with modified fast fcm for brain mr images segmentation (retraction of vol 44, pg 999, 2011). Pattern Recognit 47(12):3979–3979

    Google Scholar 

  • Kahali S, Sing JK, Saha PK (2018) A new fuzzy clustering algorithm for brain mr image segmentation using gaussian probabilistic and entropy-based likelihood measures. In: 2018 international conference on communication, computing and internet of things (IC3IoT). pp 54–59. https://doi.org/10.1109/IC3IoT.2018.8668139

  • Kannan S, Devi R, Ramathilagam S, Takezawa K (2013) Effective fcm noise clustering algorithms in medical images. Comput Biol Med 43(2):73–83

    Google Scholar 

  • Krinidis S, Chatzis V (2010) A robust fuzzy local information c-means clustering algorithm. IEEE Trans Image Process 19(5):1328–1337

    MathSciNet  MATH  Google Scholar 

  • Krishnapuram R, Keller JM (1993) A possibilistic approach to clustering. IEEE Trans Fuzzy Syst 1(2):98–110

    Google Scholar 

  • Kumar D, Verma H, Mehra A, Agrawal RK (2018) A modified intuitionistic fuzzy c-means clustering approach to segment human brain mri image. Multimed Tools Appl. https://doi.org/10.1007/s11042-018-5954-0

    Article  Google Scholar 

  • Li RP, Mukaidono M (1999) Gaussian clustering method based on maximum-fuzzy-entropy interpretation. Fuzzy Sets Syst 102(2):253–258

    MathSciNet  MATH  Google Scholar 

  • Li C, Huang R, Ding Z, Gatenby JC, Metaxas DN, Gore JC (2011) A level set method for image segmentation in the presence of intensity inhomogeneities with application to mri. IEEE Trans Image Process 20(7):2007–2016

    MathSciNet  MATH  Google Scholar 

  • Li C, Zhao H, Xu Z (2018) Kernel c-means clustering algorithms for hesitant fuzzy information in decision making. Int J Fuzzy Syst 20(1):141–154

    MathSciNet  Google Scholar 

  • Lin KP (2013) A novel evolutionary kernel intuitionistic fuzzy \( c \)-means clustering algorithm. IEEE Trans Fuzzy Syst 22(5):1074–1087

    Google Scholar 

  • Lloyd S (1982) Least squares quantization in pcm. IEEE Trans Inf Theory 28(2):129–137

    MathSciNet  MATH  Google Scholar 

  • Mercer J (1909) Xvi. functions of positive and negative type, and their connection the theory of integral equations. Philos Trans R Soc Lond A 209(441–458):415–446

    MATH  Google Scholar 

  • Muller KR, Mika S, Ratsch G, Tsuda K, Scholkopf B (2001) An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 12(2):181–201

    Google Scholar 

  • Murofushi T, Sugeno M (2000) Fuzzy measures and fuzzy integrals. In: Grabisch M, Murofushi T, Sugeno M (eds) Fuzzy measures and integrals. Theory and applications. Heidelberg, Physica-Verlag, pp 3–41

    MATH  Google Scholar 

  • Nayak J, Naik B, Behera H (2015) Fuzzy c-means (fcm) clustering algorithm: a decade review from 2000 to 2014. In: Computational intelligence in data mining-volume 2. Springer, pp 133–149

  • Olabarriaga SD, Smeulders AW (2001) Interaction in the segmentation of medical images: a survey. Med Image Anal 5(2):127–142

    Google Scholar 

  • Pal NR, Pal SK (1992) Higher order fuzzy entropy and hybrid entropy of a set. Inf Sci 61(3):211–231

    MathSciNet  MATH  Google Scholar 

  • Pal NR, Pal K, Keller JM, Bezdek JC (2005) A possibilistic fuzzy c-means clustering algorithm. IEEE Trans Fuzzy Syst 13(4):517–530

    Google Scholar 

  • Pelekis N, Iakovidis DK, Kotsifakos EE, Kopanakis I (2008) Fuzzy clustering of intuitionistic fuzzy data. Int J Bus Intell Data Min 3(1):45–65

    Google Scholar 

  • Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Ann Rev Biomed Eng 2(1):315–337

    Google Scholar 

  • Pham TX, Siarry P, Oulhadj H (2018) Integrating fuzzy entropy clustering with an improved pso for mri brain image segmentation. Appl Soft Comput 65:230–242

    Google Scholar 

  • Qiu C, Xiao J, Yu L, Han L, Iqbal MN (2013) A modified interval type-2 fuzzy c-means algorithm with application in mr image segmentation. Pattern Recognit Lett 34(12):1329–1338

    Google Scholar 

  • Reddick WE, Glass JO, Cook EN, Elkin TD, Deaton RJ (1997) Automated segmentation and classification of multispectral magnetic resonance images of brain using artificial neural networks. IEEE Trans Med Imaging 16(6):911–918

    Google Scholar 

  • Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4):1428–1442

    Google Scholar 

  • Rui Y, Huang TS, Chang SF (1999) Image retrieval: current techniques, promising directions, and open issues. J Vis Commun Image Represent 10(1):39–62

    Google Scholar 

  • Sato M, Lakare S, Wan M, Kaufman A, Nakajima M (2000) A gradient magnitude based region growing algorithm for accurate segmentation. In: 2000 International Conference on image processing, 2000. Proceedings, vol 3. IEEE, pp 448–451

  • Schaaf T, Kemp T (1997) Confidence measures for spontaneous speech recognition. In: International conference on acoustics, speech, and signal processing, 1997. ICASSP-97, IEEE, vol 2. IEEE, pp 875–878

  • Szmidt E, Kacprzyk J (2000) Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst 114(3):505–518

    MathSciNet  MATH  Google Scholar 

  • Tran D, Wagner M (2000) Fuzzy entropy clustering. In: The ninth IEEE international conference on fuzzy systems, 2000. FUZZ IEEE 2000, vol 1. IEEE, pp 152–157

  • Verma H, Agrawal R (2015) Possibilistic intuitionistic fuzzy c-means clustering algorithm for mri brain image segmentation. Int J Artif Intell Tools 24(05):1550,016

    Google Scholar 

  • Verma H, Agrawal RK, Kumar N (2014) Improved fuzzy entropy clustering algorithm for mri brain image segmentation. Int J Imaging Syst Technol 24(4):277–283

    Google Scholar 

  • Verma H, Agrawal R, Sharan A (2016) An improved intuitionistic fuzzy c-means clustering algorithm incorporating local information for brain image segmentation. Appl Soft Comput 46:543–557

    Google Scholar 

  • Vlachos IK, Sergiadis GD (2007) The role of entropy in intuitionistic fuzzy contrast enhancement. In: International fuzzy systems association world congress. Springer, pp 104–113

  • Vovk U, Pernus F, Likar B (2007) A review of methods for correction of intensity inhomogeneity in mri. IEEE Trans Med Imaging 26(3):405–421

    Google Scholar 

  • Wang L, Chen Y, Pan X, Hong X, Xia D (2010) Level set segmentation of brain magnetic resonance images based on local gaussian distribution fitting energy. J Neurosci Methods 188(2):316–325

    Google Scholar 

  • Wang Z, Song Q, Soh YC, Sim K (2013) An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Computer Vis Image Underst 117(10):1412–1420

    Google Scholar 

  • Xu Z, Wu J (2010) Intuitionistic fuzzy c-means clustering algorithms. J Syst Eng Electron 21(4):580–590

    Google Scholar 

  • Yager RR (1979) On the measure of fuzziness and negation part i: membership in the unit interval. Int J General Syst 5(4):221–229

    MATH  Google Scholar 

  • Yager RR (1980) On the measure of fuzziness and negation. ii. Lattices. Inf Control 44(3):236–260

    MathSciNet  MATH  Google Scholar 

  • Yager RR (2000) On the entropy of fuzzy measures. IEEE Trans Fuzzy Syst 8(4):453–461

    MathSciNet  Google Scholar 

  • Yang MS, Wu KL (2006) Unsupervised possibilistic clustering. Pattern Recognit 39(1):5–21

    Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Science and Technology (PURSE), New Delhi, and Council of Scientific & Industrial Research, New Delhi, for the financial support. The authors are also thankful to the anonymous reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhirendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Derivation for partition matrix and cluster centroid

Derivation for partition matrix and cluster centroid

The Lagrangian for the objective function (23) of the proposed KIFECM method can be given as:

$$\begin{aligned} L= & {} \mathop \sum \nolimits _{i=1}^c \mathop \sum \nolimits _{j=1}^N\mu _{ij}(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) \nonumber \\&+\, \frac{\sigma ^2}{c}\sum _{i=1}^c \mathop \sum \nolimits _{j=1}^N(\mu _{ij}\log \mu _{ij} - \mu _{ij}) \nonumber \\&+\, \lambda \mathop \sum \nolimits _{i=1}^c \mathop \sum \nolimits _{j=1}^N\mu _{ij}\log \mu _{ij} \nonumber \\&+\,\mathop \sum \nolimits _{i=1}^NY_j\left( 1-\mathop \sum \nolimits _{i=1}^c\mu _{ij}\right) \end{aligned}$$
(33)

where \(Y_j\) is Lagrange multiplier \(\forall j \in \{1,2, \dots , N\}\). The solution can be obtained after differentiating above with respect to \(\mu _{ij}\), \(\mu _{V}(v_{i})\), \(\nu _{V}(v_{i})\) and \(\pi _{V}(v_{i})\).

$$\begin{aligned}&\frac{\partial L}{\partial \mu _{ij}} =(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \frac{\sigma ^2}{c}\log \mu _{ij} \nonumber \\&\qquad +\, \lambda (1 + \log \mu _{ij}) - Y_j = 0 \nonumber \\&\quad \Rightarrow \, c(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) +(\sigma ^2 + c\lambda )\log \mu _{ij} \nonumber \\&\qquad +\,c\lambda - cY_j = 0 \nonumber \\&\quad \, \Rightarrow \, (\sigma ^2 + c\lambda )\log \mu _{ij} = cY_j - c(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i))-c\lambda \nonumber \\&\quad \, \Rightarrow \, (\sigma ^2 + c\lambda )\log \mu _{ij} = cY_j - c[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ]\nonumber \\&\quad \,\Rightarrow \, \log \mu _{ij} = \frac{cY_j}{(\sigma ^2 + c\lambda )} -\frac{ c[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ]}{(\sigma ^2 + c\lambda )} \nonumber \\&\quad \Rightarrow \, \mu _{ij} = \exp \left( \frac{cY_j}{(\sigma ^2 + c\lambda )}\right) \nonumber \\&\qquad \exp \left( -\frac{ c[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ]}{(\sigma ^2 + c\lambda )}\right) \nonumber \\&\qquad {\mathrm{Elimination}}\ {\mathrm{of}}\ Y_j\ {\mathrm{with}}\ {\mathrm{the}}\ {\mathrm{constraint}}\ {\mathrm{will}}\ {\mathrm{leads}}\ {\mathrm{to}}\nonumber \\ \end{aligned}$$
(34)
$$\begin{aligned}&\quad \Rightarrow \, \mu _{ij}=\frac{\exp \left( -\frac{c[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ]}{(\sigma ^2 + c\lambda )}\right) }{\sum _{k=1}^c\exp \left( -\frac{c[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k)) + \lambda ]}{(\sigma ^2 + c\lambda )}\right) } \nonumber \\&\quad \,\Rightarrow \, \mu _{ij}=\frac{\exp \left( -\frac{[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ]}{\left( \frac{\sigma ^2}{c} + \lambda \right) }\right) }{\sum _{k=1}^c\exp \left( -\frac{[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k)) + \lambda ]}{\left( \frac{\sigma ^2}{c} + \lambda \right) }\right) } \nonumber \\&\quad \, \Rightarrow \, \mu _{ij}=\frac{\exp (-[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ])^{\frac{1}{\left( \frac{\sigma ^2}{c} + \lambda \right) }}}{\sum _{k=1}^c\exp (-[(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k)) + \lambda ])^{\frac{1}{\left( \frac{\sigma ^2}{c} + \lambda \right) }}} \nonumber \\&\quad \, \Rightarrow \, \mu _{ij}=\frac{1}{\sum _{k=1}^c\frac{\exp ([(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)) + \lambda ])^{\frac{1}{\left( \frac{\sigma ^2}{c} + \lambda \right) }}}{\exp ([(1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k)) + \lambda ])^{\frac{1}{\left( \frac{\sigma ^2}{c} + \lambda \right) }}}} \nonumber \\&\quad \,\Rightarrow \mu _{ij} = \left\{ \mathop \sum \nolimits _{k=1}^c\left( \frac{\exp (1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)+ \lambda )}{\exp (1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k)+\lambda )}\right) ^\frac{1}{\frac{\sigma ^2}{c}+\lambda }\right\} ^{-1}\nonumber \\ \end{aligned}$$
(35)
$$\begin{aligned}&\quad \Rightarrow \mu _{ij} = \left\{ \mathop \sum \nolimits _{k=1}^c\left( \frac{\exp (1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i))}{\exp (1 - K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_k))}\right) ^\frac{1}{\frac{\sigma ^2}{c}+\lambda }\right\} ^{-1}\nonumber \\ \end{aligned}$$
(36)
$$\begin{aligned}&\frac{\partial L}{\partial \mu _{V}(v_{i})} =\ \mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)(\mu _{X}(x_j)\nonumber \\&\qquad -\mu _{V}(v_i))=0 \nonumber \\&\quad \Rightarrow \, \mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\mu _{X}(x_j)\nonumber \\&\qquad -\mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\mu _{V}(v_i)=0 \end{aligned}$$
(37)
$$\begin{aligned}&\quad \Rightarrow \, \mu _{V}(v_i)=\frac{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\mu _{X}(x_j) )}{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i) )} \end{aligned}$$
(38)
$$\begin{aligned}&\frac{\partial L}{\partial \nu _{V}(v_{i})} =\, \mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)(\nu _{X}(x_j)-\nu _{V}(v_i))=0 \nonumber \\&\quad \Rightarrow \, \mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\nu _{X}(x_j)\nonumber \\&\qquad -\mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\nu _{V}(v_i)=0 \end{aligned}$$
(39)
$$\begin{aligned}&\quad \Rightarrow \, \nu _{V}(v_i)=\frac{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\nu _{X}(x_j) )}{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i))} \end{aligned}$$
(40)
$$\begin{aligned}&\frac{\partial L}{\partial \pi _{V}(v_{i})} {=}\,\mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)(\pi _{X}(x_j){-}\pi _{V}(v_i)){=}0 \nonumber \\&\quad \Rightarrow \, \mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\pi _{X}(x_j)\nonumber \\&\qquad -\mathop \sum \nolimits _{j=1}^N\mu _{ij}K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\pi _{V}(v_i)=0 \end{aligned}$$
(41)
$$\begin{aligned}&\quad \Rightarrow \, \pi _{V}(v_i)=\frac{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i)\pi _{X}(x_j) )}{\sum _{j=1}^N\mu _{ij}(K({\mathbf {x}}^{\mathrm{IFS}}_j,{\mathbf {v}}^{\mathrm{IFS}}_i) )} \end{aligned}$$
(42)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Agrawal, R.K. & Verma, H. Kernel intuitionistic fuzzy entropy clustering for MRI image segmentation. Soft Comput 24, 4003–4026 (2020). https://doi.org/10.1007/s00500-019-04169-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-04169-y

Keywords

Navigation