Alrehamy H, Walker C (2018) Exploiting extensible background knowledge for clustering-based automatic keyphrase extraction. Soft Comput 22(21):7041–7057
Article
Google Scholar
Artetxe M, Labaka G, Agirre E (2018) A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings. In: Proceedings of ACL, pp 789–798
Baeza-Yates R, Ribeiro BAN et al (2011) Modern information retrieval. ACM Press/Addison-Wesley, New York/Harlow
Google Scholar
Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell (TPAMI) 35(8):1798–1828
Article
Google Scholar
Bhattacharya I, Godbole S, Joshi S (2008) Structured entity identification and document categorization: two tasks with one joint model. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, Las Vegas, 24–27 Aug 2008. ACM, New York, pp 25–33. https://doi.org/10.1145/1401890.1401899
Bird S, Klein E, Loper E (2009) Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc., Sebastopol
MATH
Google Scholar
Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. J Mach Learn Res 3(1):993–1022
MATH
Google Scholar
Bojanowski P, Grave E, Joulin A, Mikolov T (2017) Enriching word vectors with subword information. Trans Assoc Comput Linguist (TACL) 5:135–146
Article
Google Scholar
Boudin F (2013) A comparison of centrality measures for graph-based keyphrase extraction. In: Proceedings of IJCNLP, pp 834–838
Boudin F (2015) Reducing over-generation errors for automatic keyphrase extraction using integer linear programming. In: Proceedings of ACL workshop on novel computational approaches to keyphrase extraction, pp 19–24
Bulgarov F, Caragea C (2015) A comparison of supervised keyphrase extraction models. In: Proceedings of WWW, pp 13–14
Caragea C, Bulgarov F, Godea A, Gollapalli SD (2014) Citation-enhanced keyphrase extraction from research papers: a supervised approach. In: Proceedings of EMNLP, pp 1435–1446
Chuang J, Manning CD, Heer J (2012) Termite: visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces, pp 74–77
Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language processing (almost) from scratch. J Mach Learn Res 12(8):2493–2537
MATH
Google Scholar
Conneau A, Lample G, Ranzato M, Denoyer L, Jégou H (2018) Word translation without parallel data. In: Proceedings of ICLR, pp 1–14
Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26(3):297–302
Article
Google Scholar
Din S, Paul A, Ahmad A, Gupta B, Rho S (2018) Service orchestration of optimizing continuous features in industrial surveillance using big data based fog-enabled internet of things. IEEE Access 6:21582–21591
Article
Google Scholar
Florescu C, Caragea C (2017) Positionrank: an unsupervised approach to keyphrase extraction from scholarly documents. In: Proceedings of ACL, pp 1105–1115
Frank E, Paynter GW, Witten IH, Gutwin C, Nevill-Manning CG (1999) Domain-specific keyphrase extraction. In: Proceedings of EMNLP, pp 668–673
Gollapalli SD, Caragea C (2014) Extracting keyphrases from research papers using citation networks. In: Proceedings of AAAI, pp 1629–1635
Gollapalli SD, Li X, Yang P (2017) Incorporating expert knowledge into keyphrase extraction. In: Proceedings of AAAI, pp 3180–3187
Gupta BB (2018) Computer and cyber security: principles, algorithm, applications, and perspectives. CRC Press, Boca Raton
Google Scholar
Hasan KS, Ng V (2010) Conundrums in unsupervised keyphrase extraction: making sense of the state-of-the-art. In: Proceedings of COLING: Posters, pp 365–373
Hasan KS, Ng V (2014) Automatic keyphrase extraction: a survey of the state of the art. In: Proceedings of ACL, pp 1262–1273
Jones S, Staveley MS (1999) Phrasier: a system for interactive document retrieval using keyphrases. In: Proceedings of SIGIR, pp 160–167
Krapivin M, Autayeu A, Marchese M, Blanzieri E, Segata N (2010) Keyphrases extraction from scientific documents: improving machine learning approaches with natural language processing. In: Proceedings of ICADL, pp 102–111
Levy O, Goldberg Y (2014) Dependency-based word embeddings. Proc ACL 2:302–308
Google Scholar
Liu Z, Huang W, Zheng Y, Sun M (2010) Automatic keyphrase extraction via topic decomposition. In: Proceedings of EMNLP, pp 366–376
Liu Y, Liu Z, Chua TS, Sun M (2015) Topical word embeddings. In: Proceedings of AAAI, pp 2418–2424
Lopez P, Romary L (2010) Humb: automatic key term extraction from scientific articles in GROBID. In: Proceedings of workshop on semantic evaluation, pp 248–251
Luo J, Meng B, Quan C, Tu X (2015) Exploiting salient semantic analysis for information retrieval. Enterp Inf Syst 10(9):959–969
Article
Google Scholar
Manning CD, Raghavan P, Schütze H (2008) Introduction to information retrieval. Cambridge University Press, Cambridge
Book
Google Scholar
Mihalcea R, Tarau P (2004) Textrank: bringing order into text. In: Proceedings of EMNLP, pp 404–411
Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space. In: Proceedings of ICLR workshop
Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS, pp 3111–3119
Nedjah N, Wyant RS, Mourelle L, Gupta B (2017) Efficient yet robust biometric iris matching on smart cards for data high security and privacy. Fut Gener Comput Syst 76:18–32
Article
Google Scholar
Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical report, Stanford InfoLab
Pennington J, Socher R, Manning C (2014) Glove: global vectors for word representation. In: Proceedings of EMNLP, pp 1532–1543
Peters M, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized word representations. In: Proceedings of NAACL, pp 2227–2237
Plageras AP, Psannis KE, Stergiou C, Wang H, Gupta BB (2018) Efficient iot-based sensor big data collection-processing and analysis in smart buildings. Fut Gener Comput Syst 82:349–357
Article
Google Scholar
Porter M (2006) An algorithm for suffix stripping. Program Electron Libr Inf Syst 40(3):211–218
Google Scholar
Qazvinian V, Radev DR, Özgür A (2010) Citation summarization through keyphrase extraction. In: Proceedings of COLING, pp 895–903
Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323(6088):533–536
Article
Google Scholar
Shi B, Lam W, Jameel S, Schockaert S, Lai KP (2017) Jointly learning word embeddings and latent topics. In: Proceedings of SIGIR, pp 375–384
Shtok A, Kurland O, Carmel D (2010) Using statistical decision theory and relevance models for query-performance prediction. In: Proceedings of the 33rd international ACM SIGIR conference on research and development in information retrieval, Geneva, 19–23 July 2010. ACM, New York, pp 259–266. https://doi.org/10.1145/1835449.1835494
Sterckx L, Demeester T, Deleu J, Develder C (2015) Topical word importance for fast keyphrase extraction. In: Proceedings of WWW, pp 121–122
Sterckx L, Caragea C, Demeester T, Develder C (2016) Supervised keyphrase extraction as positive unlabeled learning. In: Proceedings of EMNLP, pp 1924–1929
Tang J, Qu M, Mei Q (2015a) Pte: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of SIGKDD, pp 1165–1174
Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q (2015b) Line: large-scale information network embedding. In: Proceedings of WWW, pp 1067–1077
Tang Y, Huang W, Liu Q, Tung AK, Wang X, Yang J, Zhang B (2017) Qalink: enriching text documents with relevant Q&A site contents. In: Proceedings of CIKM, pp 1359–1368
Teneva N, Cheng W (2017) Salience rank: efficient keyphrase extraction with topic modeling. In: Proceedings of ACL, pp 530–535
Turney PD (2000) Learning algorithms for keyphrase extraction. Inf Retr J 2(4):303–336
Article
Google Scholar
Wan X, Xiao J (2008) Single document keyphrase extraction using neighborhood knowledge. In: Proceedings of AAAI, pp 855–860
Wang R, Liu W, McDonald C (2015) Corpus-independent generic keyphrase extraction using word embedding vectors. In: Proceedings of DL-WSDM, pp 39–46
Wang Y, Jin Y, Zhu X, Goutte C (2016) Extracting discriminative keyphrases with learned semantic hierarchies. In: Proceedings of COLING, pp 932–942
Wieting J, Bansal M, Gimpel K, Livescu K (2016) Charagram: embedding words and sentences via character \(n\)-grams. In: Proceedings of EMNLP, pp 1504–1515
Yang J-M, Cai R, Wang Y, Zhu J, Zhang L, Ma W-Y (2009) Incorporating site-level knowledge to extract structured data from web forums. In: Proceedings of the 18th international conference on world wide web, Madrid, 20–24 Apr 2009. ACM, New York, pp 181–190. https://doi.org/10.1145/1526709.1526735
Zhang W, Feng W, Wang J (2013) Integrating semantic relatedness and words’ intrinsic features for keyword extraction. In: Proceedings of IJCAI, pp 139–160
Zhang W, Ming Z, Zhang Y, Liu T, Chua TS (2015) Exploring key concept paraphrasing based on pivot language translation for question retrieval. In: Proceedings of AAAI, pp 410–416
Zhang Q, Wang Y, Gong Y, Huang X (2016) Keyphrase extraction using deep recurrent neural networks on Twitter. In: Proceedings of EMNLP, pp 836–844
Zhang Y, Chang Y, Liu X, Gollapalli SD, Li X, Xiao C (2017) Mike: keyphrase extraction by integrating multidimensional information. In: Proceedings of CIKM, pp 1349–1358
Zhang Z, Gao J, Ciravegna F (2018) Semre-rank: Improving automatic term extraction by incorporating semantic relatedness with personalised pagerank. ACM Trans Knowl Dis Data (TKDD) 12(5):57:1–57:41
Google Scholar