Option pricing and the Greeks under Gaussian fuzzy environments


This work considers pricing European call options and the study of Greek letters of options under a fuzzy environment. In the past work, stock prices are usually represented by symmetric triangular fuzzy numbers for the computational convenience while pricing options with uncertainty. It might not be enough to explain the stochastic nature of the underlining price in the option pricing formula. This work considers developing the fuzzy pattern of European call option under the assumption of the stock return being a Gaussian fuzzy number. The study of Greeks for the sensitivity analysis of the fuzzy call option price with respect to the change in the pricing variables is included. The empirical analysis and comparison on the fuzzy European option pricing based on the real market data of SPX options at CBOE are provided. Our results show that the fuzzy options are more close to the theoretical options derived from the Black–Scholes formula while employing Gaussian fuzzy stock returns for pricing European call options.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. 1.


  2. 2.


  3. 3.


  4. 4.

    The data source on the February 16, 2018, rate. http://www.optionistics.com/quotes/stock-option-chains/SPX.

  5. 5.

    The data source on the February 16, 2018, rate. https://www.federalreserve.gov/releases/h15/.


  1. Andersen TG, Bollerslev T, Diebold FX, Ebens H (2001) The distribution of realized stock return volatility. J Financ Econ 61(1):43–76

    Article  Google Scholar 

  2. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654

    MathSciNet  Article  Google Scholar 

  3. Buckley J (1987) The fuzzy mathematics of finance. Fuzzy Sets Syst 21(3):257–273

    MathSciNet  Article  Google Scholar 

  4. Carlsson C, Fullér R (2003) A fuzzy approach to real option valuation. Fuzzy Sets Syst 139(2):297–312

    MathSciNet  Article  Google Scholar 

  5. Chrysafis KA, Papadopoulos BK (2009) On theoretical pricing of options with fuzzy estimators. J Comput Appl Math 223(2):552–566

    MathSciNet  Article  Google Scholar 

  6. De Andrés-Sánchez J (2018) Pricing European options with triangular fuzzy parameters: assessing alternative triangular approximations in the Spanish stock option market. Int J Fuzzy Syst 20(5):1624–1643

    MathSciNet  Article  Google Scholar 

  7. Dubois D, Prade H (1978) Operations on fuzzy numbers. Int J Syst Sci 9(6):613–626

    MathSciNet  Article  Google Scholar 

  8. Guerra ML, Sorini L, Stefanini L (2011) Option price sensitivities through fuzzy numbers. Comput Math Appl 61(3):515–526

    MathSciNet  Article  Google Scholar 

  9. Hull JC (2006) Options, futures, and other derivatives. Pearson Education India, Delhi

    Google Scholar 

  10. Jarrow RA, Turnbull SM (2000) Derivative securities. South-Western Publishing, Nashville

    Google Scholar 

  11. J Mezei, M Collan, P Luukka (2018) Real option analysis with interval-valued fuzzy numbers and the fuzzy pay-off method. In: Kacprzyk J, Szmidt E, Zadrożny S, Atanassov K, Krawczak M (eds) Advances in fuzzy logic and technology 2017. Springer International Publishing, Cham, pp 509–520

  12. Muzzioli S, De Baets B (2017) Fuzzy approaches to option price modeling. IEEE Trans Fuzzy Syst 25(2):392–401

    Article  Google Scholar 

  13. Muzzioli S, Ruggieri A, De Baets B (2015) A comparison of fuzzy regression methods for the estimation of the implied volatility smile function. Fuzzy Sets Syst 266:131–143

    MathSciNet  Article  Google Scholar 

  14. Passarelli D (2012) Trading options Greeks: how time, volatility, and other pricing factors drive profits, vol 159. Wiley, Hoboken

    Google Scholar 

  15. Qin Z, Li X (2008) Option pricing formula for fuzzy financial market. J Uncertain Syst 2(1):17–21

    Google Scholar 

  16. Shafi K, Latif N, Shad SA, Idrees Z, Gulzar S (2018) Estimating option greeks under the stochastic volatility using simulation. Phys A Stat Mech Appl 503:1288–1296

    MathSciNet  Article  Google Scholar 

  17. Starczewski JT (2005) Extended triangular norms on Gaussian fuzzy sets. In: EUSFLAT conference, pp 872–877

  18. Sun Y, Yao K, Dong J (2018) Asian option pricing problems of uncertain mean-reverting stock model. Soft Comput 22(17):5583–5592

    Article  Google Scholar 

  19. Wang X, He J, Li S (2014) Compound option pricing under fuzzy environment. J Appl Math 2014:875319. https://doi.org/10.1155/2014/875319

    MathSciNet  Article  MATH  Google Scholar 

  20. Wolkenhauer O (1997) A course in fuzzy systems and control. Int J Electr Eng Educ 34(3):282

    Article  Google Scholar 

  21. Wu HC (2004) Pricing European options based on the fuzzy pattern of Black–Scholes formula. Comput Oper Res 31(7):1069–1081

    Article  Google Scholar 

  22. Wu HC (2005) European option pricing under fuzzy environments. Int J Intell Syst 20(1):89–102

    Article  Google Scholar 

  23. Xu W, Wu C, Xu W, Li H (2009) A jump-diffusion model for option pricing under fuzzy environments. Insur Math Econ 44(3):337–344

    MathSciNet  Article  Google Scholar 

  24. Xu W, Xu W, Li H, Zhang W (2010) A study of greek letters of currency option under uncertainty environments. Math Comput Model 51(5):670–681

    MathSciNet  Article  Google Scholar 

  25. Xu W, Liu G, Yu X (2018) A binomial tree approach to pricing vulnerable option in a vague world. Int J Uncertain Fuzziness Knowl Based Syst 26(01):143–162

    MathSciNet  Article  Google Scholar 

  26. Yoshida Y (2003) The valuation of European options in uncertain environment. Eur J Oper Res 145(1):221–229

    MathSciNet  Article  Google Scholar 

  27. Yoshida Y, Yasuda M, Ji Nakagami, Kurano M (2006) A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty. Fuzzy Sets Syst 157(19):2614–2626

    MathSciNet  Article  Google Scholar 

  28. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353

    Article  Google Scholar 

  29. Zadeh LA (1975) The concept of a linguistic variable and its application to approximate reasoning—I. Inf Sci 8(3):199–249

    MathSciNet  Article  Google Scholar 

  30. Zhang LH, Zhang WG, Xu WJ, Xiao WL (2012) The double exponential jump diffusion model for pricing European options under fuzzy environments. Econ Model 29(3):780–786

    Article  Google Scholar 

  31. Zhang WG, Xiao WL, Kong WT, Zhang Y (2015) Fuzzy pricing of geometric asian options and its algorithm. Appl Soft Comput 28:360–367

    Article  Google Scholar 

  32. Zhou J, Yang F, Wang K (2015) Fuzzy arithmetic on LR fuzzy numbers with applications to fuzzy programming. J Intell Fuzzy Syst 30(1):71–87

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hong-Ming Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Hu, C. & Yeh, W. Option pricing and the Greeks under Gaussian fuzzy environments. Soft Comput 23, 13351–13374 (2019). https://doi.org/10.1007/s00500-019-03876-w

Download citation


  • Gaussian fuzzy number
  • Options
  • Greeks
  • SPX
  • Optimization