Does car sharing help reduce the total number of vehicles?

Abstract

Car sharing has become a non-negligible complement to the existing transportation and is viewed as an environmentally beneficial alternative. In this paper, we develop a game-theoretic model to investigate how the introduction of car sharing has an impact on the market. Our results indicate that car sharing does not always reduce vehicle quantity. Specifically, only when the producing cost and transportation need are below some thresholds and the market size is greater than a threshold, can car sharing decrease the total number of vehicles. Otherwise, the manufacturer can generate a larger profit by increasing its production volume. We also find that the introduction of car sharing always makes the retailer incur loss, but it benefits the manufacturer if the market size is sufficiently large. Finally, our results show that the total number of vehicles does not always increase in sharing service level. In such cases, there is a positive spillover effect: by providing the car-sharing service, the manufacturer generates a larger profit with producing less vehicles, which helps alleviate some urban problems, such as air pollution and congestion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Agrawal VV, Ferguson M, Toktay LB, Thomas VM (2012) Is leasing greener than selling? Manag Sci 58(3):523–533

    Article  Google Scholar 

  2. Baptista P, Melo S, Rolim C (2014) Energy, environmental and mobility impacts of car-sharing systems. Empirical results from Lisbon, Portugal. Proc Soc Behav Sci 111:28–37

    Article  Google Scholar 

  3. Bellos I, Ferguson M, Toktay LB (2017) The car sharing economy: interaction of business model choice and product line design. M&SOM Manuf Serv Oper Manag 19(2):185–201

    Article  Google Scholar 

  4. Bergman N, Schwanen T, Sovacool BK (2017) Imagined people, behaviour and future mobility: insights from visions of electric vehicles and car clubs in the United Kingdom. Transp Policy 59:165–173

    Article  Google Scholar 

  5. Bhaskaran SR, Gilbert SM (2005) Selling and leasing strategies for durable goods with complementary products. Manag Sci 51(8):1278–1290

    Article  Google Scholar 

  6. Brinkman JC (2016) Congestion, agglomeration, and the structure of cities. J Urban Econ 94:13–31

    Article  Google Scholar 

  7. Bruglieri M, Pezzella F, Pisacane O (2017) Heuristic algorithms for the operator-based relocation problem in one-way electric carsharing systems. Discrete Optim 23:56–80

    MathSciNet  MATH  Article  Google Scholar 

  8. Chen J, Zhang H, Sun Y (2012) Implementing coordination contracts in a manufacturer stackelberg dualchannel supply chain. Omega 40(5):571–583

    Article  Google Scholar 

  9. Chen KY, Kaya M, Özer Ö (2008) Dual sales channel management with service competition. M&SOM Manuf Serv Oper Manag 10(4):654–675

    Article  Google Scholar 

  10. Chiang WyK, Monahan GE (2005) Managing inventories in a two-echelon dual-channel supply chain. Eur J Oper Res 162(2):325–341

    MATH  Article  Google Scholar 

  11. Chiang WyK, Chhajed D, Hess JD (2003) Direct marketing, indirect profits: a strategic analysis of dual-channel supply-chain design. Manag Sci 49(1):1–20

    MATH  Article  Google Scholar 

  12. Desai P, Purohit D (1998) Leasing and selling: optimal marketing strategies for a durable goods firm. Manag Sci 44(11):19–34

    MATH  Article  Google Scholar 

  13. Desai PS (2001) Quality segmentation in spatial markets: when does cannibalization affect product line design? Mark Sci 20(3):265–283

    Article  Google Scholar 

  14. Desai PS, Purohit D (1999) Competition in durable goods markets: the strategic consequences of leasing and selling. Mark Sci 18(1):42–58

    Article  Google Scholar 

  15. Ding XH, Huang RH (2010) Effects of knowledge spillover on inter-organizational resource sharing decision in collaborative knowledge creation. Eur J Oper Res 201(3):949–959

    MATH  Article  Google Scholar 

  16. Dowling R, Kent J (2015) Practice and public–private partnerships in sustainable transport governance: the case of car sharing in Sydney, Australia. Transp Policy 40:58–64

    Article  Google Scholar 

  17. Dumrongsiri A, Fan M, Jain A, Moinzadeh K (2008) A supply chain model with direct and retail channels. Eur J Oper Res 187(3):691–718

    MathSciNet  MATH  Article  Google Scholar 

  18. Efthymiou D, Antoniou C, Waddell P (2013) Factors affecting the adoption of vehicle sharing systems by young drivers. Transp Policy 29(4):64–73

    Article  Google Scholar 

  19. Firnkorn J, Müller M (2011) What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm. Ecol Econ 70(8):1519–1528

    Article  Google Scholar 

  20. Firnkorn J, Müller M (2012) Selling mobility instead of cars: new business strategies of automakers and the impact on private vehicle holding. Bus Strateg Environ 21(4):264–280

    Article  Google Scholar 

  21. George DK, Xia CH (2011) Fleet-sizing and service availability for a vehicle rental system via closed queueing networks. Eur J Oper Res 211(1):198–207

    MathSciNet  MATH  Article  Google Scholar 

  22. Hampshire R, Gaites C (2011) Peer-to-peer carsharing: market analysis and potential growth. Transp Res Record 2217:119–126

    Article  Google Scholar 

  23. Hara Y, Hato E (2017) A car sharing auction with temporal–spatial OD connection conditions. Transp Res Part B Methodol. https://doi.org/10.1016/j.trb.2017.08.025

  24. He L, Mak HY, Rong Y, Shen ZJM (2017) Service region design for urban electric vehicle sharing systems. M&SOM Manuf Serv Oper Manag 19(2):309–327

    Article  Google Scholar 

  25. Huang H, Ke H, Wang L (2016) Equilibrium analysis of pricing competition and cooperation in supply chain with one common manufacturer and duopoly retailers. Int J Prod Econ 178:12–21

    Article  Google Scholar 

  26. Jain A, Bala R (2018) Differentiated or integrated: capacity and service level choice for differentiated products. Eur J Oper Res 266(3):1025–1037

    MathSciNet  MATH  Article  Google Scholar 

  27. Jorge D, Molnar G, de Almeida Correia GH (2015) Trip pricing of one-way station-based carsharing networks with zone and time of day price variations. Transp Res Part B Methodol 81:461–482

    Article  Google Scholar 

  28. Kaspi M, Raviv T, Tzur M (2014) Parking reservation policies in one-way vehicle sharing systems. Transp Res Part B Methodol 62:35–50

    Article  Google Scholar 

  29. Ke H, Huang H, Gao X (2018) Pricing decision problem in dual-channel supply chain based on experts’ belief degrees. Soft Comput 22(17):5683–5698

    MATH  Article  Google Scholar 

  30. Kek AG, Cheu RL, Meng Q, Fung CH (2009) A decision support system for vehicle relocation operations in carsharing systems. Transp Res Part E Logist Transp Rev 45(1):149–158

    Article  Google Scholar 

  31. Kim K, Chhajed D (2000) Commonality in product design: cost saving, valuation change and cannibalization. Eur J Oper Res 125(3):602–621

    MATH  Article  Google Scholar 

  32. Kim K, Chhajed D (2002) Product design with multiple quality-type attributes. Manag Sci 48(11):1502–1511

    Article  Google Scholar 

  33. Le Vine S, Zolfaghari A, Polak J (2014) Carsharing: evolution, challenges and opportunities. https://www.acea.be/uploads/publications/SAG_Report_-_Car_Sharing.pdf. Accessed 29 August 2018

  34. Martin E, Shaheen S, Lidicker J (2010) Impact of carsharing on household vehicle holdings: results from North American shared-use vehicle survey. Transp Res Record 2143:150–158

    Article  Google Scholar 

  35. Martin EW, Shaheen SA (2011) Greenhouse gas emission impacts of carsharing in North America. IEEE Trans Intell Transp Syst 12(4):1074–1086

    Article  Google Scholar 

  36. Moorthy KS, Png IPL (1992) Market segmentation, cannibalization, and the timing of product introductions. Manag Sci 38(3):345–359

    MATH  Article  Google Scholar 

  37. Nourinejad M, Roorda MJ (2014) A dynamic carsharing decision support system. Transp Res Part E Logist Transp Rev 66:36–50

    Article  Google Scholar 

  38. Nourinejad M, Zhu S, Bahrami S, Roorda MJ (2015) Vehicle relocation and staff rebalancing in one-way carsharing systems. Transp Res Part E Logist Transp Rev 81:98–113

    Article  Google Scholar 

  39. Prieto M, Baltas G, Stan V (2017) Car sharing adoption intention in urban areas: what are the key sociodemographic drivers? Transp Res Part A Policy Pract 101:218–227

    Article  Google Scholar 

  40. Pucher J, Zr Peng, Mittal N, Zhu Y, Korattyswaroopam N (2007) Urban transport trends and policies in China and India: impacts of rapid economic growth. Transp Rev 27(4):379–410

    Article  Google Scholar 

  41. Reid L, Thomas L (1999) Does leasing improve end of product life management? J Ind Ecol 3(4):10–13

    Article  Google Scholar 

  42. Schmöller S, Weikl S, Müller J, Bogenberger K (2015) Empirical analysis of free-floating carsharing usage: the Munich and Berlin case. Transp Res Part C Emerg Technol 56:34–51

    Article  Google Scholar 

  43. Shaheen S, Cohen A (2015) Innovative mobility carsharing outlook. http://innovativemobility.org/wp-content/uploads/2015/07/Summer-2015-Carsharing-Outlook_Final-1.pdf. Accessed 29 August 2018

  44. Soleimani F (2016) Optimal pricing decisions in a fuzzy dual-channel supply chain. Soft Comput 20(2):689–696

    MathSciNet  MATH  Article  Google Scholar 

  45. Tian L, Jiang B (2018) Effects of consumer-to-consumer product sharing on distribution channel. Prod Oper Manag 27(2):350–367

    Article  Google Scholar 

  46. Wang Y, Xiao Y, Yang N (2014) Improving reliability of a shared supplier with competition and spillovers. Eur J Oper Res 236(2):499–510

    MathSciNet  MATH  Article  Google Scholar 

  47. Wang Y, Tang W, Zhao R (2018) Supplier’s strategy: align with the dominant entrant retailer or the vulnerable incumbent retailer? Soft Comput. https://doi.org/10.1007/s00500-018-3008-1

  48. Weikl S, Bogenberger K (2013) Relocation strategies and algorithms for free-floating car sharing systems. IEEE Intell Transp Syst Mag 5(4):100–111

    Article  Google Scholar 

  49. Wilhelms MP, Henkel S, Falk T (2017) To earn is not enough: a means-end analysis to uncover peer-providers’ participation motives in peer-to-peer carsharing. Technol Forecast Soc Change 125:38–47

    Article  Google Scholar 

  50. Wu CH, Chen CW, Hsieh CC (2012) Competitive pricing decisions in a two-echelon supply chain with horizontal and vertical competition. Int J Prod Econ 135(1):265–274

    Article  Google Scholar 

  51. Xu M, Meng Q, Liu Z (2018) Electric vehicle fleet size and trip pricing for one-way carsharing services considering vehicle relocation and personnel assignment. Transp Res Part B Methodol 111:60–82

    Article  Google Scholar 

  52. Yan W, Xiong Y, Chu J, Li G, Xiong Z (2018) Clicks versus bricks: the role of durability in marketing channel strategy of durable goods manufacturers. Eur J Oper Res 265(3):909–918

    MathSciNet  MATH  Article  Google Scholar 

  53. Yoon DH (2016) Supplier encroachment and investment spillovers. Prod Oper Manag 25(11):1839–1854

    Article  Google Scholar 

  54. Zheng J, Scott M, Rodriguez M, Sierzchula W, Platz D, Guo J, Adams T (2009) Carsharing in a university community: assessing potential demand and distinct market characteristics. Transp Res Record 2110:18–26

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 71371141) and the Fundamental Research Funds for the Central Universities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiwei Chai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 4

To compare \( Q^\mathrm{S} \) and \( d^\mathrm{N} \), we let

$$\begin{aligned} G(t)&=Q^\mathrm{S}(t)-d^\mathrm{N} (t)\nonumber \\&=\frac{n}{4} \left( \left( (1-e)a-\frac{a(2-a)c}{1-a}\right) t - \frac{ac}{(1-a)t} \right. \nonumber \\&\left. \quad +\,\frac{2ac}{1-a}\right) +\frac{a}{1-a} ,\quad t \in (0,1). \end{aligned}$$
(27)

Since \( \partial G(t) / \partial t =\frac{n}{4}[ (1-e)a - \frac{a(2-a)c}{1-a} + \frac{ac}{(1-a)t^2}] \), G(t) increases in t, or first increases in t, then decreases in t. However, \(\lim _{t \rightarrow 0^+} G(t) \rightarrow - \infty \), \( G(1) =\frac{na(1-a(1-e-c))}{4(1-a)}+\frac{a}{1-a} > 0\) , hence G(t) has only one root in (0, 1). We denote this root as \( \bar{t} \). Note that in our model \( t > t_0 \), otherwise no one owns a car in the car-sharing market, so we only care about the interval \( (t_0 , 1) \). If \( t_0 < \bar{t} \), \( Q^\mathrm{S} (t) < d^\mathrm{N} (t) \) in \( (t_0, \bar{t}) \), and \( Q^\mathrm{S} (t) > d^\mathrm{N} (t)\) in \( (\bar{t}, 1) \). If \( t_0 \ge \bar{t} \), \( Q^\mathrm{S} (t) \ge d^\mathrm{N} (t) \) in \( (t_0, 1) \). By checking the value \( G(t_0) \), we have the following conditions:

When \( G(t_0) <0\), we have

$$\begin{aligned}&c^2 - \left( \frac{(3-2a)(1-e)}{2-a} + \frac{4a}{n(1-a)(2-a)}\right) c\nonumber \\&\quad +\,\frac{1-e}{2-a}\left( (1-e)(1-a)-\frac{4}{n}\right) > 0 . \end{aligned}$$
(28)

When \( G(t_0) \ge 0\), we have

$$\begin{aligned}&c^2 - \left( \frac{(3-2a)(1-e)}{2-a} + \frac{4a}{n(1-a)(2-a)}\right) c\nonumber \\&\quad +\,\frac{1-e}{2-a}\left( (1-e)(1-a)-\frac{4}{n}\right) \le 0 , \end{aligned}$$
(29)

in which \( Q^\mathrm{S} \) is always larger than or equal to \( d^\mathrm{N} \).

Let

$$\begin{aligned} K(c)&=c^2 - \left( \frac{(3-2a)(1-e)}{2-a} + \frac{4a}{n(1-a)(2-a)}\right) c\nonumber \\&\quad +\,\frac{1-e}{2-a}\left( (1-e)(1-a)-\frac{4}{n}\right) . \end{aligned}$$
(30)

K(c) is a quadratic function which first decreases then increases in c. The discriminant \(\varDelta = [\frac{(3-2a)(1-e)}{2-a} + \frac{4a}{n(1-a)(2-a)}]^2 - \frac{4(1-e)}{2-a}[(1-e)(1-a)-\frac{4}{n}]= \frac{(1-e)^2}{(2-a)^2}+\frac{16a^2}{n^2(1-a)^2(2-a)^2}+\frac{8a(3-2a)(1-e)}{(2-a)^2(1-a)n} + \frac{16(1-e)}{(2-a)n} > 0\), so K(c) has two roots \( c_1 \) and \( c_2 \) (we assume \( c_1 < c_2\)). Since \(0< c< 1-e \), and \( K(1-e)=- \frac{4(1-e)}{n(2-a)(1-a)} <0 \). We have \( c_2 > 1-e \).

Then we check \( c_1 \). First we find \( K(0)= \frac{1-e}{2-a}[(1-e)(1-a)-\frac{4}{n}]\). If \( n \le \frac{4}{(1-e)(1-a)} \), \( K(c) \le 0 \) in \( (0,1-e) \), which means in this case \( Q^\mathrm{S} \) is always bigger than \( d^\mathrm{N} \). Let \( n_0=\frac{4}{(1-e)(1-a)} \), if \( n > n_0 \), then \( K(0) > 0 \), in which case \( K(c) > 0 \) if \( 0< c < c_1 \), and \( K(c) < 0 \) if \( c_1< c < 1-e \). By applying the square root formula, we derive

$$\begin{aligned} c_1&= \frac{1}{2}\left( \frac{(3-2a)(1-e)}{2-a}+\frac{4a}{n(1-a)(2-a)} \right. \nonumber \\&\quad \left. -\,\sqrt{\frac{(1-e)^2}{(2-a)^2}+\frac{16a^2}{n^2(1-a)^2(2-a)^2}+\frac{16(1-e)}{n(2-a)}}\right) .\nonumber \\ \end{aligned}$$
(31)

Proof of Proposition 5

One can easily show that \( \partial d^\mathrm{S}_\mathrm{R} / \partial a < 0\), and \( \partial d^\mathrm{S}_\mathrm{S} / \partial a > 0 \). Then we investigate the relationship between \( Q^\mathrm{S} \) and a. Firstly by checking the condition \( t>t_0 \), we have \( 0< a < \frac{1-e-c/t}{1-e-c} \). Next we solve the inequality \(\partial Q^\mathrm{S} / \partial a > 0\), which is equal to \(a^2-2a+A>0\), where \( A= \frac{(1-e-2c)t^2+(2c+\frac{4}{n})t - c}{(1-e-c)t^2}\). Let \( L(a)=a^2-2a+A \), then we can show that L(a) decreases in \( (-\infty ,1) \). Since \( 0<a< \frac{1-e-c/t}{1-e-c} \), we have L(a) decreases in \( (0, \frac{1-e-c/t}{1-e-c}) \).

We divide this problem into three cases:

If \( L(0) \le 0 \), \( L(a) < 0 \) in \( (0, \frac{1-e-c/t}{1-e-c}) \). \( Q^\mathrm{S} \) always decreases in a.

If \( L(\frac{1-e-c/t}{1-e-c}) \ge 0 \), \( L(a) > 0\) in \( (0, \frac{1-e-c/t}{1-e-c}) \). \( Q^\mathrm{S} \) always increases in a.

If \( L(0) > 0 \), and \( L(\frac{1-e-c/t}{1-e-c}) < 0 \). \( Q^\mathrm{S} \) increases in \( (0,a_1) \), and decreases in \( (a_1, \frac{1-e-c/t}{1-e-c})\), where \( a_1=1-\sqrt{1-A} \).

Proof of Proposition 6

\({{\pi r}^\mathrm{S}} = (f^S-w^\mathrm{S})d^\mathrm{S}_\mathrm{R}\), and \( {{\pi r}^\mathrm{N}} = (f^N-w^\mathrm{N})d^\mathrm{N} \). Since \( f^\mathrm{S} <f^\mathrm{N} \), \( w^\mathrm{S} = w^\mathrm{N} \), and \( d^\mathrm{S}_\mathrm{R} < d^\mathrm{N} \) (i.e., \( v_2 > v_0 \)), \( {{\pi r}^\mathrm{S}} \) is always less than \( {{\pi r}^\mathrm{N}} \). Then we consider the manufacturer’s profit:

Let

$$\begin{aligned} H(t)= & {} {{\pi m}^\mathrm{S}(t)} - {{\pi m}^\mathrm{N}(t)}\nonumber \\= & {} \frac{n}{8}\left( \left( a(1-e)^2 - 2ac(1-e) + \frac{a(2-a)c^2}{1-a}\right) t \right. \nonumber \\&\left. +\,\frac{ac^2}{(1-a)t} - \frac{2ac^2}{1-a}\right) - \frac{ca}{1-a} . \end{aligned}$$
(32)

\( H^{\prime }(t) = \frac{n}{8} [ a(1-e)^2 -2ac(1-e)+\frac{a(2-a)c^2}{1-a} - \frac{ac^2}{(1-a)t^2}] \), where \( H^{\prime }(t) \) is the differential of H(t) . One can easily show that \( H^{\prime }(t) \) is an increasing function in t.

\( \lim _{t \rightarrow 0} H^{\prime }(t) \rightarrow - \infty \), and \( H^{\prime }(1) = \frac{na}{8}(1-e-c)^2 > 0\). So H(t) first decreases in \( (0, t^*) \), then increases in \( (t^*, 1) \), where \( t^* = \frac{c}{\sqrt{(1-a)(1-e)^2-2(1-a)(1-e)c + (2-a)c^2}} \in (0,1) \) is the root of \( H^{\prime }(t) \).

Remember that in our model the condition \( t>t_0 \) must be satisfied, so we compare the values of \( t_0 \) and \( t^* \). Let \( t_0 > t^* \), which is the same as to solve the following inequality:

$$\begin{aligned} (2+a)c^2- 2(1-e)(1+a)c+a(1-e)^2 > 0 . \end{aligned}$$
(33)

By solving the inequality we derive that when \( c \in (0, \frac{a(1-e)}{2+a}) \), \( t_0 > t^* \); and \( c \in (\frac{a(1-e)}{2+a}, 1-e) \), \( t_0 < t^* \).

When \( t_0 > t^* \), \( H(t_0) \) is the minimum of H(t) . If \( H(t_0)>0 \), we have \( n> \frac{8[ac+(1-e)(1-a)]}{(1-a)(2-a)(1-e-c)^2} =n_1\).

When \( t_0 < t^* \), \( H(t^*) \) is the minimum of H(t) . If \( H(t^*)>0 \), we have \( n>\frac{4}{\sqrt{(1-a)(1-e)^2-2(1-a)(1-e)c+(2-a)c^2}-c} =n_2 \).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ke, H., Chai, S. & Cheng, R. Does car sharing help reduce the total number of vehicles?. Soft Comput 23, 12461–12474 (2019). https://doi.org/10.1007/s00500-019-03791-0

Download citation

Keywords

  • Car sharing
  • Channel competition
  • Car club
  • Spillover effect
  • Game theory
  • Supply chain management