Skip to main content

Advertisement

Log in

Meta-heuristic algorithms for a clustering-based fuzzy bi-criteria hybrid flow shop scheduling problem

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper deals with hybrid flow shop scheduling problem with unrelated and eligible machines along with fuzzy processing times and fuzzy due dates. The objective is to minimize a linear combination of total completion time and maximum lateness of jobs. A mixed integer mathematical model is presented for the problem. The most challenging parts of hybrid evolutionary algorithms are determination of efficient strategies by which the whole search space is explored to perform local search around the promising search areas. In this study, a clustering-based approach as a data mining tool is introduced to identify the promising search areas. A repetitive clustering with an evolutionary algorithm is simultaneously employed to determine more promising parts of the solution space. Then, the searches in those parts are intensified with a local search. Here, two clustering-based meta-heuristic algorithms are applied to solve the problem, namely particle swarm optimization and genetic algorithm. The parameters are tuned by Taguchi experimental design, and various randomly generated test problems are used to evaluate the efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Marichelvam et al. 2014)

Fig. 2

(Wu 2010)

Fig. 3

(Balin 2012)

Fig. 4

(Filho et al. 2007)

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Amin-Naseri MR, Beheshti-Nia MA (2009) Hybrid flow shop scheduling with parallel batching. Int J Prod Econ 117(1):185–196

    Article  Google Scholar 

  • Arqub OA (2017) Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl 28(7):1591–1610

    Article  Google Scholar 

  • Arqub OA, Abo-Hammour Z (2014) Numerical solution of systems of second-order boundary value problems using continuous genetic algorithm. Inf Sci 279:396–415

    Article  MathSciNet  MATH  Google Scholar 

  • Arqub OA, AL-Smadi M, Momani S, Hayat T (2016) Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput 20(8):3283–3302

    Article  MATH  Google Scholar 

  • Arqub OA, AL-Smadi M, Momani S, Hayat T (2017) Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput 21(23):7191–7206

    Article  MATH  Google Scholar 

  • Arthanary TS, Ramamurthy KG (1971) An extension of two machine sequencing problems. Oper Res 8:10–22

    MathSciNet  Google Scholar 

  • Asadi H (2017) Apply fuzzy learning effect with fuzzy processing times for single machine scheduling problems. J Manuf Syst 42:244–261

    Article  Google Scholar 

  • Balin S (2012) Non-identical parallel machine scheduling with fuzzy processing times using genetic algorithm and simulation. Int J Adv Manuf Technol 61(9–12):1115–1127

    Article  Google Scholar 

  • Bean JC (1993) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6(2):154–161

    Article  MATH  Google Scholar 

  • Behnamian J, Zandieh M (2013) Earliness and tardiness minimizing on a realistic hybrid flowshop scheduling with learning effect by advanced metaheuristic. Arab J Sci Eng 38(5):1229–1242

    Article  MathSciNet  Google Scholar 

  • Bezdek J, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clustering algorithm. Comput Geosci 10(2–3):191–203

    Article  Google Scholar 

  • Choi SH, Wang K (2012) Flexible flow shop scheduling with stochastic processing times: a decomposition-based approach. Comput Ind Eng 63(2):362–373

    Article  Google Scholar 

  • Dugardin F, Yalaoui F, Amodeo L (2010) New multi-objective method to solve reentrant hybrid flow shop scheduling problem. Eur J Oper Res 203(1):22–31

    Article  MathSciNet  MATH  Google Scholar 

  • Ebrahimi M, Fatemi Ghomi SMT, Karimi B (2013) Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates. Appl Math Model 38(9–10):2490–2504

    MathSciNet  MATH  Google Scholar 

  • Eddaly M, Jarboui B, Siarry P (2016) Combinatorial particle swarm optimization for solving blocking flowshop scheduling problem. J Comput Des Eng 3(4):295–311

    Google Scholar 

  • Engin O, Ceran G, Yilmaz M (2011) An efficient genetic algorithm for hybrid flow shop scheduling with multiprocessor task problems. Appl Soft Comput 11(3):3056–3065

    Article  Google Scholar 

  • Eren T, Guner E (2006) A bicriteria flowshop scheduling problem with setup times. Appl Math Comput 183:1292–1300

    MathSciNet  MATH  Google Scholar 

  • Fadaei M, Zandieh M (2013) Scheduling a bi-objective hybrid flow shop with sequence-dependent family setup times using metaheuristics. Arab J Sci Eng 38(8):2233–2244

    Article  Google Scholar 

  • Figielska E (2014) A heuristic for scheduling in a two-stage hybrid flowshop with renewable resources shared among the stages. Eur J Oper Res 236(2):433–444

    Article  MathSciNet  MATH  Google Scholar 

  • Filho GR, Nagano MS, Lorena LAN (2007) Evolutionary clustering search for flowtime minimization in permutation flow shop. Springer, Berlin, pp 69–81

    Google Scholar 

  • Gao KZ, Suganthan PN, Pan QK, Chua TJ, Chong CH, Cai TX (2016) An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Syst Appl 65:52–67

    Article  Google Scholar 

  • Gupta J (1988) Two-stage hybrid flowshop scheduling problem. Oper Res Soc 39(4):359–364

    Article  MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI

    Google Scholar 

  • Javadi B, Saidi-Mehrabad M, Haji A, Mahdavi I, Jolai F, Mahdavi-Amiri N (2008) No-wait flow shop scheduling using fuzzy multi-objective linear programming. J Frankl Inst 345(5):452–467

    Article  MATH  Google Scholar 

  • Jian Y, Qiansheng C (2001) The upper bound of the optimal number of clusters in fuzzy clustering. Sci China Ser F Inf Sci 44(2):119–125

    Google Scholar 

  • Johnson SM (1954) Optimal two- and three-stage production schedules with setup times included. Nav Res Logist Q 1(1):61–80

    Article  MATH  Google Scholar 

  • Kahraman C, Engin O, Kaya I, Yilmaz MK (2008) An application of effective genetic algorithm for solving hybrid flow shop scheduling problems. Int J Comput Intell Syst 1(2):134–147

    Article  Google Scholar 

  • Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proc IEEE Int Conf Neural Netw 4:1942–1948

    Article  Google Scholar 

  • Khademi-Zare H, Fakhrzad MB (2011) Solving flexible flow-shop problem with a hybrid genetic algorithm and data mining: a fuzzy approach. Expert Syst Appl 38(6):7609–7615

    Article  Google Scholar 

  • Khalouli S, Ghedjati F, Hamzaoui A (2010) A meta-heuristic approach to solve a JIT scheduling problem in a hybrid flow shop. Eng Appl Artif Intell 23(5):765–771

    Article  Google Scholar 

  • Lee C-Y, Variaktarakis GL (1994) Minimizing makespan in hybrid flowshops. Oper Res Lett 16(3):149–158

    Article  MathSciNet  MATH  Google Scholar 

  • Liu GS, Zhou Y, Yang HD (2017) Minimizing energy consumption and tardiness penalty for fuzzy flowshop scheduling with state-dependent setup time. J Clean Prod 147:470–484

    Article  Google Scholar 

  • Low C, Hsu C-J, Su C-T (2008) A two-stage hybrid flowshop scheduling problem with a function constraint and unrelated machines. Comput Oper Res 35(3):845–853

    Article  MathSciNet  MATH  Google Scholar 

  • Mahdavi I, Zarezadeh V, Shahnazari-Shahrezaei P (2011) Flexible flowshop scheduling with equal number of unrelated parallel machines. J Ind Eng Int 7(13):74–83

    Google Scholar 

  • Marichelvam MK, Prabaharan T, Yang XX (2014) Improved cuckoo search algorithm for hybrid flow shop scheduling problems to minimize makespan. Appl Soft Comput 19:93–101

    Article  Google Scholar 

  • Marichelvam MK, Tosun O, Geetha M (2017) Hybrid monkey search algorithm for flow shop scheduling problem under makespan and total flow time. Appl Soft Comput 55:82–92

    Article  Google Scholar 

  • Mehrjerdi YZ, Ghasemi Gajvan AA, Shah Mohammadi M (2014) A bi-criterion hybrid flow shop time scheduling: balancing the performance and total completion times. Int J Ind Eng Prod Manag 24(4):475–488

    Google Scholar 

  • Mirsanei HS, Zandieh M, Moayed MJ (2011) A simulated annealing algorithm to hybrid flow shop scheduling with sequence-dependent setup times. J Intell Manuf 22(6):965–978

    Article  Google Scholar 

  • Mousavai SM, Zandieh M, Yazdani M (2013) A simulated annealing/local search to minimize the makespan and total tardiness on a hybrid flowshop. Int J Adv Manuf Technol 64(1):369–388

    Article  Google Scholar 

  • Naderi B, Fatemi Ghomi SMT, Aminnayeri M (2010) A high performing metaheuristic for job shop scheduling with sequence-dependent setup times. Appl Soft Comput 10:703–710

    Article  Google Scholar 

  • Nagano SN, Silva AAD, Lorena LAN (2014) A new evolutionary clustering search for a no-wait flow shop problem with set-up times. Eng Appl Artif Intell 25(6):1114–1120

    Article  Google Scholar 

  • Noori-Darvish S, Mahdavi I, Mahdavi-Amiri N (2012) A bi-objective possibilistic programming model for open shop scheduling problems with sequence-dependent setup times, fuzzy processing times, and fuzzy due dates. Appl Soft Comput J 12(4):1399–1416

    Article  Google Scholar 

  • Oliveira ACM, Lorena LAN (2004) Detecting promising areas by evolutionary clustering search. Advances in Artificial Intelligence, pp. 385-394

    Chapter  Google Scholar 

  • Portmann MC, Vignier A, Dardilhac D, Dezalay D (1998) Branch and bound crossed with GA to solve hybrid flowshops. Eur J Oper Res 107(2):389–400

    Article  MATH  Google Scholar 

  • Ribas I, Leisten R, Framiñan JM (2010) Review and classification of hybrid flow shop scheduling problems from a production system and a solutions procedure perspective. Comput Oper Res 37(8):1439–1454

    Article  MathSciNet  MATH  Google Scholar 

  • Ruiz R, Vazquez-Rodriguez JA (2010) Invited review: the hybrid flow shop scheduling problem. Eur J Oper Res 205(1):1–18

    Article  MATH  Google Scholar 

  • Tavakkoli-Moghaddam R, Javadi B, Jolai F, Ghodratnam A (2010) The use of a fuzzy multi-objective linear programming for solving a multi objective single-machine scheduling problem. Appl Soft Comput J 10(3):919–925

    Article  Google Scholar 

  • Wang SJ, Liu M (2013a) A heuristic method for two-stage hybrid flow shop with dedicated machines. Comput Oper Res 40(1):438–450

    Article  MathSciNet  MATH  Google Scholar 

  • Wang SJ, Liu M (2013b) A genetic algorithm for two-stage no-wait hybrid flow shop scheduling problem. Comput Oper Res 40(4):1064–1075

    Article  MathSciNet  MATH  Google Scholar 

  • Wang SJ, Liu M (2014) Two-stage hybrid flow shop scheduling with preventive maintenance using multi-objective tabu search method. Int J Prod Res 52(5):1495–1508

    Article  Google Scholar 

  • Wang HM, Chou FD, Wu FC (2011) A simulated annealing for hybrid flow shop scheduling with multiprocessor tasks to minimize makespan. Int J Adv Manuf Technol 53(5–8):761–776

    Article  Google Scholar 

  • Warren Liao T, Su P (2017) Parallel machine scheduling in fuzzy environment with hybrid ant colony optimization including a comparison of fuzzy number ranking methods in consideration of spread of fuzziness. Appl Soft Comput 56:65–81

    Article  Google Scholar 

  • Woo YB, Jung S, Kim BS (2017) A rule-based genetic algorithm with an improvement heuristic for unrelated parallel machine scheduling problem with time-dependent deterioration and multiple rate-modifying activities. Comput Ind Eng 109:179–190

    Article  Google Scholar 

  • Wu HC (2010) Solving the fuzzy earliness and tardiness in scheduling problems by using genetic algorithms. Expert Syst Appl 37(7):4860–4866

    Article  Google Scholar 

  • Yang J (2013) A two-stage hybrid flow shop with dedicated machines at the first stage. Comput Oper Res 40(12):2836–2843

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  • Zandieh M, Fatemi Ghomi SMT, Moattar Husseini SM (2006) An immune algorithm approach to hybrid flow shops scheduling with sequence-dependent setup times. Appl Math Comput 180(1):111–127

    MathSciNet  MATH  Google Scholar 

  • Ziaeifar A, Tavakkoli-Moghaddam R, Pichka K (2012) Solving a new mathematical model for a hybrid flow shop scheduling problem with a processor assignment by a genetic algorithm. Int J Adv Manuf Technol 61(1–4):339–349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Fazlollahtabar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golneshini, F.P., Fazlollahtabar, H. Meta-heuristic algorithms for a clustering-based fuzzy bi-criteria hybrid flow shop scheduling problem. Soft Comput 23, 12103–12122 (2019). https://doi.org/10.1007/s00500-019-03767-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-019-03767-0

Keywords

Navigation