Allahdadi M, Golestane AK (2016) Monte carlo simulation for computing the worst value of the objective function in the interval linear programming. Int J Appl Comput Math 2(4):509–518
MathSciNet
Article
Google Scholar
Cerulli R, Ambrosio C D’, Gentili M (2017) Best and worst values of the optimal cost of the interval transportation problem. In: International conference on optimization and decision science, pp 367–374. Springer
Cheng G, Huang G, Dong C (2017) Convex contractive interval linear programming for resources and environmental systems management. Stoch Environ Res Risk Assess 31(1):205–224
Article
Google Scholar
Chinneck JW, Ramadan K (2000) Linear programming with interval coefficients. J Oper Res Soc 51(2):209–220
Article
Google Scholar
D’Ambrosio C, Gentili M, Cerulli R (2018) The optimal value range problem for the interval (immune) transportation problem. Under Revision for Omega
Gerlach W (1981) Zur lösung linearer ungleichungssysteme bei störimg der rechten seite und der koeffizientenmatrix. Optimization 12(1):41–43
MathSciNet
MATH
Google Scholar
Hladik M (2009) Optimal value range in interval linear programming. Fuzzy Optim Decis Mak 8(3):283–294
MathSciNet
Article
Google Scholar
Hladik M (2012a) Interval linear programming: a survey. In: Mann ZA (ed) Linear programming–new frontiers in theory and applications, chap 2. Nova Science, New York, pp 85–120
Google Scholar
Hladik M (2012b) An interval linear programming contractor. In: Ramik J, Stavarek D (eds) Proceedings 30th international conference on mathematical methods in economics 2012, Karvina, Czech Republic, pp 284–289, Silesian University in Opava
Hladik M (2014) On approximation of the best case optimal value in interval linear programming. Optim Lett 8(7):1985–1997
MathSciNet
Article
Google Scholar
Jansson C (2004) Rigorous lower and upper bounds in linear programming. SIAM J Optim 14(3):914–935
MathSciNet
Article
Google Scholar
Juman Z, Hoque M (2014) A heuristic solution technique to attain the minimal total cost bounds of transporting a homogeneous product with varying demands and supplies. Eur J Oper Res 239(1):146–156
MathSciNet
Article
Google Scholar
Lai KK, Wang SY, Xu JP, Zhu SS, Fang Y (2002) A class of linear interval programming problems and its application to portfolio selection. IEEE Trans Fuzzy Syst 10(6):698–704
Article
Google Scholar
Li DF (2016) Interval-valued matrix games. In: Linear programming models and methods of matrix games with payoffs of triangular fuzzy numbers. Springer, pp 3–63
Li YP, Huang GH, Guo P, Yang ZF, Nie SL (2010) A dual-interval vertex analysis method and its application to environmental decision making under uncertainty. Eur J Oper Res 200(2):536–550
Article
Google Scholar
Liu ST, Kao C (2009) Matrix games with interval data. Comput Ind Eng 56(4):1697–1700
Article
Google Scholar
Mraz F (1998) Calculating the exact bounds of optimal valuesin lp with interval coefficients. Ann Oper Res 81:51–62
MathSciNet
Article
Google Scholar
Neumaier A (1999) A simple derivation of the Hansen–Bliek–Rohn–Ning–Kearfott enclosure for linear interval equations. Reliab Comput 5(2):131–136
MathSciNet
Article
Google Scholar
Oettli W, Prager W (1964) Compatibility of approximate solution of linear equations with given error bounds for coefficients and right-hand sides. Numerische Mathematik 6(1):405–409
MathSciNet
Article
Google Scholar
Rohn J (2006a) Interval linear programming. In: Linear optimization problems with inexact data. Springer, pp 79–100
Rohn J (2006b) Solvability of systems of interval linear equations and inequalities. In: Linear optimization problems with inexact data. Springer, pp 35–77
Rump SM (1999) INTLAB—INTerval LABoratory. In: Csendes T (ed) Developments in reliable computing, pp 77–104. Kluwer Academic Publishers, Dordrecht. http://www.ti3.tuhh.de/rump/
Xie F, Butt MM, Li Z, Zhu L (2017) An upper bound on the minimal total cost of the transportation problem with varying demands and supplies. Omega 68:105–118
Article
Google Scholar