Skip to main content

An empirical model of adaptive cloud resource provisioning with speculation

Abstract

Cloud computing is a utility model that offers everything as a service and supports dynamical resource provisioning and auto-scaling in data center. The proper load balancing and dynamic resource provisioning improves cloud performance and attracts the cloud users. This impacts a need for adaptive and automated provisioning of resources, aligned with clients’ Service Level Agreement (SLA) amidst the time variant cloud environment. The focus of our work is to study how speculative analysis can be used to predict exact resources for an application, whose accuracy demands solution for under/over-utilization of the resource. We have tested our simulator with varying resource load and proved that our system reduces resource allocation latencies and SLA violations. Experimental results show that our proposed model offers more adaptive resource provisioning, as compared to heuristic and other machine learning algorithms. Our experimental results demonstrate adaptive resource allocation over customer-driven service management, under the rapidly changing requirements of cloud computing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Abbadi IM, Ruan A (2013) Towards trustworthy resource scheduling in clouds. IEEE Trans Inf Forensics Secur 8(6):973–984

    Article  Google Scholar 

  • Ali-Eldin A, Tordsson J, Elmroth E (2012) An adaptive hybrid elasticity controller for cloud infrastructures. In: 2012 IEEE network operations and management symposium (NOMS). IEEE

  • Ali-Eldin J, Tordsson E, Elmroth M Kihl (2013) Workload classification for efficient auto-scaling of cloud resources. Tech Rep 2013:2005

    Google Scholar 

  • Aljazzaf ZM (2015) Modeling and measuring the quality of online services. Kuwait J Sci 42(3):134–157

    MathSciNet  Google Scholar 

  • Al-Sayed MM, Khattab S, Omara FA (2016) Prediction mechanisms for monitoring state of cloud resources using Markov chain model. J Parallel Distrib Comput 96:163–171

    Article  Google Scholar 

  • Bahrpeyma F, Haghighi H, Zakerolhosseini A (2016) A bipolar resource management framework for resource provisioning in Cloud’s virtualized environment. Appl Soft Comput 46:487–500

    Article  Google Scholar 

  • Bataineh MH (2012) Artificial neural network for studying human performance, Msc. Thesis. The University of IOWA, IOWA, USA

  • Buyya R, Beloglazov A, Abawajy J (2010) Energy-efficient management of data center resources for cloud computing: a vision, architectural elements, and open challenges. arXiv:1006.0308

  • Candeia D, Santos RA, Lopes R (2015) Business-driven long-term capacity planning for SaaS applications. IEEE Trans Cloud Comput 3(3):290–303

    Article  Google Scholar 

  • Chandra A, Gong W, Shenoy P (2003) Dynamic resource allocation for shared data centers using online measurements. In: International workshop on quality of service. Springer, Berlin, pp 381–398

  • Chard K, Bubendorfer K (2013) High performance resource allocation strategies for computational economies. IEEE Trans Parallel Distrib Syst 24(1):72–84

    Article  Google Scholar 

  • Chen G, He W, Liu J, Nath S, Rigas L, Xiao L, Zhao F, (2015) Energy-aware server provisioning and load dispatching for connection-intensive internet services. In: NSDI, vol 8. pp 337–350

  • Fard HM, Prodan R, Fahringer T (2013) A truthful dynamic workflow scheduling mechanism for commercial multicloud environments. IEEE Trans Parallel Distrib Syst 24(6):1203–1212

    Article  Google Scholar 

  • Garg SK, Buyya R (2011) Networkcloudsim: modelling parallel applications in cloud simulations. In: 2011 Fourth IEEE international conference on utility and cloud computing (UCC). IEEE, pp 105–113

  • Gong Z, Gu X, Wilkes J (2010) Press: predictive elastic resource scaling for cloud systems. In: 2010 International conference on network and service management (CNSM). IEEE, pp 9–16

  • Goudarzi H, Pedram M (2011) Multi-dimensional SLA-based resource allocation for multi-tier cloud computing systems. In: 2011 IEEE international conference on cloud computing (CLOUD). IEEE, pp 324–331

  • Huber N, von Quast M, Hauck M, Kounev S (2011) Evaluating and modeling virtualization performance overhead for cloud environments. In: CLOSER. pp 563–573

  • Hussain H, Malik SUR, Hameed A, Khan SU, Bickler G, Min-Allah N, Qureshi MB, Zhang L, Yongji W, Ghani N, Kolodziej J (2013) A survey on resource allocation in high performance distributed computing systems. Parallel Comput 39(11):709–736

    MathSciNet  Article  Google Scholar 

  • Iosup A, Ostermann S, Yigitbasi MN, Prodan R, Fahringer T, Epema D (2011) Performance analysis of cloud computing services for many-tasks scientific computing. IEEE Trans Parallel Distrib Syst 22(6):931–945

    Article  Google Scholar 

  • Islam S, Keung J, Lee K, Liu A (2012) Empirical prediction models for adaptive resource provisioning in the cloud. Future Gener Comput Syst 28(1):155–162

    Article  Google Scholar 

  • Jiang Y, Perng CS, Li T, Chang RN (2013) Cloud analytics for capacity planning and instant vm provisioning. IEEE Trans Netw Serv Manag 10(3):312–325

    Article  Google Scholar 

  • Khanghahi N, Ravanmehr R (2013) Cloud computing performance evaluation: issues and challenges. Comput 5(1):29–41

    Google Scholar 

  • Koch F, Assunção MD, Cardonha C, Netto MA (2016) Optimising resource costs of cloud computing for education. Future Gener Comput Syst 55:473–479

    Article  Google Scholar 

  • Lee WY (2012) Energy-efficient scheduling of periodic real-time tasks on lightly loaded multicore processors. IEEE Trans Parallel Distrib Syst 23(3):530–537

    Article  Google Scholar 

  • Lee YC, Zomaya AY (2011) Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans Parallel Distrib Syst 22(8):1374–1381

    Article  Google Scholar 

  • Li C (2012) Optimal resource provisioning for cloud computing environment. J Supercomput 62(2):989–1022

    Article  Google Scholar 

  • Li H, Xin M (2012) An approach for cloud resource risk prediction. Procedia Eng 29:3292–3296

    Article  Google Scholar 

  • Liang Q, Zhang J, Zhang YH, Liang JM (2014) The placement method of resources and applications based on request prediction in cloud data center. Inf Sci 279:735–745

    Article  Google Scholar 

  • Magalhaes D, Calheiros RN, Buyya R, Gomes DG (2015) Workload modeling for resource usage analysis and simulation in cloud computing. Comput Electr Eng 47:69–81

    Article  Google Scholar 

  • Netto MAS et al (2014) Evaluating auto-scaling strategies for cloud computing environments. In: IEEE 22nd international symposium on modelling, analysis and simulation of computer and telecommunication systems (MASCOTS). IEEE

  • Papadopoulos AV et al (2016) PEAS: a performance evaluation framework for auto-scaling strategies in cloud applications. ACM Trans Model Perform Eval Comput Syst (TOMPECS) 1(4):15

    Google Scholar 

  • Papagianni C, Leivadeas A, Papavassiliou S, Maglaris V, Cervello-Pastor C, Monje A (2013) On the optimal allocation of virtual resources in cloud computing networks. IEEE Trans Comput 62(6):1060–1071

    MathSciNet  Article  Google Scholar 

  • Parikh K, Hawanna N, PK H, Iyengar NCS (2015) Virtual machine allocation policy in cloud computing using cloudsim in java. Int J Grid Distrib Comput 8(1):145–158

    Article  Google Scholar 

  • Piraghaj SF, Calheiros RN, Chan J, Dastjerdi AV, Buyya R (2016) Virtual machine customization and task mapping architecture for efficient allocation of cloud data center resources. Comput J 59(2):208–224

    Article  Google Scholar 

  • Salah K (2013) A Queuing model to achieve proper elasticity for cloud cluster jobs. Int J Cloud Comput 1(1):53–64

    Google Scholar 

  • Serrano D, Bouchenak S, Kouki Y, de Oliveira Jr FA, Ledoux T, Lejeune J, Sopena J, Arantes L, Sens P (2016) SLA guarantees for cloud services. Future Gener Comput Syst 54:233–246

    Article  Google Scholar 

  • Singh S, Chana I (2015) Q-aware: quality of service based cloud resource provisioning. Comput Electr Eng 47:138–160

    Article  Google Scholar 

  • Sood SK, Sandhu R (2015) Matrix based proactive resource provisioning in mobile cloud environment. Simul Model Pract Theory 50:83–95

    Article  Google Scholar 

  • Tang C, Steinder M, Spreitzer M, Pacifici G (2007) A scalable application placement controller for enterprise data centers. In: Proceedings of the 16th international conference on World Wide Web. ACM, pp 331–340

  • Teymoor P, Sohraby K, Kim K (2016) A fair and efficient resource allocation scheme for multi-server distributed systems and networks. IEEE Trans Mob Comput 15(9):2137–2150

    Article  Google Scholar 

  • Tian W, Zhao Y, Xu M, Zhong Y, Sun X (2015) A toolkit for modeling and simulation of real-time virtual machine allocation in a cloud data center. IEEE Trans Autom Sci Eng 12(1):153–161

    Article  Google Scholar 

  • Urgaonkar R, Kozat UC, Igarashi K, Neely MJ (2010) Dynamic resource allocation and power management in virtualized data centers. In: 2010 IEEE network operations and management symposium-NOMS 2010. IEEE, pp 479–486

  • Vaquero LM, Rodero-Merino L, Buyya R (2011) Dynamically scaling applications in the cloud. ACM SIGCOMM Comput Commun Rev 41(1):45–52

    Article  Google Scholar 

  • Voorsluys W, Broberg J, Venugopal S, Buyya R (2009) Cost of virtual machine live migration in clouds: a performance evaluation. In: IEEE international conference on cloud computing. Springer, Berlin, pp 254–265

  • Wang J, Bao W, Zhu X, Yang LT, Xiang Y (2015) FESTAL: fault-tolerant elastic scheduling algorithm for real-time tasks in virtualized clouds. IEEE Trans Comput 64(9):2545–2558

    MathSciNet  Article  Google Scholar 

  • Wu L (2014) SLA-based resource provisioning for management of cloud-based software-as-a-Service applications (Doctoral dissertation, The University of Melbourne, Australia)

  • Wuhib F, Stadler R, Spreitzer M (2012) A gossip protocol for dynamic resource management in large cloud environments. IEEE Trans Netw Serv Manag 9(2):213–225

    Article  Google Scholar 

  • Xiao Z, Song W, Chen Q (2013) Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Trans Parallel Distrib Syst 24(6):1107–1117

    Article  Google Scholar 

  • Yang Y et al (2013) Heuristic scheduling algorithms for allocation of virtualized network and computing resources. J Softw Eng Appl 6:1–13

    Article  Google Scholar 

  • Zhao L, Sakr S, Liu A (2015) A framework for consumer-centric SLA management of cloud-hosted databases. IEEE Trans Serv Comput 8(4):534–549

    Article  Google Scholar 

  • Zhu X, He C, Li K, Qin X (2012) Adaptive energy-efficient scheduling for real-time tasks on DVS-enabled heterogeneous clusters. J Parallel Distrib Comput 72(6):751–763

    Article  Google Scholar 

  • Zhu X, Wang J, Guo H, Zhu D, Yang LT, Liu L (2016) Fault-tolerant scheduling for real-time scientific workflows with elastic resource provisioning in virtualized clouds. IEEE Trans Parallel Distrib Syst 27(12):3501–3517

    Article  Google Scholar 

  • Zhuang H, Liu X, Ou Z, Aberer K (2013) Impact of instance seeking strategies on resource allocation in cloud data centers. In: IEEE CLOUD. pp 27–34

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Leena Sri.

Ethics declarations

Conflict of interest

This is to certify that the both authors of this paper have no conflict of interest in publishing this paper. We assure that we will abide the terms and conditions of the journal.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliation.

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leena Sri, R., Balaji, N. An empirical model of adaptive cloud resource provisioning with speculation. Soft Comput 23, 10983–10999 (2019). https://doi.org/10.1007/s00500-018-3654-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-3654-3

Keywords

  • Cloud performance analysis
  • Automated resource provision
  • Framework design and analysis
  • Speculation