Bader DA, Moret BM, Warnow T, Wyman SK, Yan M, Tang J, Siepel AC, Caprara A (2004) Genome rearrangements analysis under parsimony and other phylogenetic algorithms (grappa) 2.0. https://www.cs.unm.edu/~moret/GRAPPA/. Accessed 16 Nov 2016
Bartz-Beielstein T, Zaefferer M (2017) Model-based methods for continuous and discrete global optimization. Appl Soft Comput 55:154–167
Article
Google Scholar
Berg C, Christensen JPR, Ressel P (1984) Harmonic analysis on semigroups, volume 100 of graduate texts in mathematics. Springer, New York
Book
Google Scholar
Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669
Article
Google Scholar
Boytsov L (2011) Indexing methods for approximate dictionary searching: comparative analysis. J Exp Algorithmics 16:1–91
MathSciNet
Article
Google Scholar
Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167
Article
Google Scholar
Camastra F, Vinciarelli A (2008) Machine learning for audio, image and video analysis: theory and applications. Advanced information and knowledge processing. Springer, London
Book
Google Scholar
Campos V, Laguna M, Martí R (2005) Context-independent scatter and tabu search for permutation problems. INFORMS J Comput 17(1):111–122
MathSciNet
Article
Google Scholar
Camps-Valls G, Martín-Guerrero JD, Rojo-Álvarez JL, Soria-Olivas E (2004) Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing 62:501–506
Article
Google Scholar
Chen Y, Gupta MR, Recht B (2009) Learning kernels from indefinite similarities. In: Proceedings of the 26th annual international conference on machine learning (ICML ’09), New York, NY, USA. ACM, pp 145–152
Constantine G (1985) Lower bounds on the spectra of symmetric matrices with nonnegative entries. Linear Algebra Appl 65:171–178
MathSciNet
Article
Google Scholar
Cortes C, Haffner P, Mohri M (2004) Rational kernels: theory and algorithms. J Mach Learn Res 5:1035–1062
MathSciNet
MATH
Google Scholar
Curriero F (2006) On the use of non-euclidean distance measures in geostatistics. Math Geol 38(8):907–926
MathSciNet
Article
Google Scholar
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
Article
Google Scholar
Deza M, Huang T (1998) Metrics on permutations, a survey. J Comb Inf Syst Sci 23(1–4):173–185
MathSciNet
MATH
Google Scholar
Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer, Berlin
Book
Google Scholar
Feller W (1971) An introduction to probability theory and its applications, vol 2. Wiley, Hoboken
MATH
Google Scholar
Forrester A, Sobester A, Keane A (2008) Engineering design via surrogate modelling. Wiley, Hoboken
Book
Google Scholar
Gablonsky J, Kelley C (2001) A locally-biased form of the direct algorithm. J Glob Optim 21(1):27–37
MathSciNet
Article
Google Scholar
Gärtner T, Lloyd J, Flach P (2003) Kernels for structured data. In: Matwin S, Sammut C (eds) Inductive logic programming, vol 2583. Lecture Notes in Computer Science. Springer, Berlin, pp 66–83
Chapter
Google Scholar
Gärtner T, Lloyd J, Flach P (2004) Kernels and distances for structured data. Mach Learn 57(3):205–232
Article
Google Scholar
Haussler D (1999) Convolution kernels on discrete structures. Technical report UCSC-CRL-99-10, Department of computer science, University of California at Santa Cruz
Hirschberg DS (1975) A linear space algorithm for computing maximal common subsequences. Commun ACM 18(6):341–343
MathSciNet
Article
Google Scholar
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In Proceedings of LION-5, pp 507–523
Ikramov K, Savel’eva N (2000) Conditionally definite matrices. Journal of Mathematical Sciences 98(1):1–50
MathSciNet
Article
Google Scholar
Jiao Y, Vert J.-P (2015) The Kendall and Mallows kernels for permutations. In: Proceedings of the 32nd international conference on machine learning (ICML-15), pp 1935–1944
Kendall M, Gibbons J (1990) Rank correlation methods. Oxford University Press, Oxford
MATH
Google Scholar
Lee C (1958) Some properties of nonbinary error-correcting codes. IRE Trans Inf Theory 4(2):77–82
MathSciNet
Article
Google Scholar
Li H, Jiang T (2004) A class of edit kernels for SVMS to predict translation initiation sites in eukaryotic mrnas. In: Proceedings of the eighth annual international conference on resaerch in computational molecular biology (RECOMB ’04), New York, NY, USA. ACM, pp 262–271
Loosli G, Canu S, Ong C (2015) Learning SVM in Krein spaces. IEEE Trans Pattern Anal Mach Intell 38(6):1204–1216
Article
Google Scholar
Marteau P-F, Gibet S (2014) On recursive edit distance kernels with application to time series classification. IEEE Trans Neural Netw Learn Syst PP(99):1–1
Google Scholar
Moraglio A, Kattan A (2011) Geometric generalisation of surrogate model based optimisation tocombinatorial spaces. In: Proceedings of the 11th European conference on evolutionary computation in combinatorial optimization (EvoCOP’11), Berlin, Heidelberg, Germany. Springer, pp 142–154
Motwani R, Raghavan P (1995) Randomized algorithms. Cambridge University Press, Cambridge
Book
Google Scholar
Murphy KP (2012) Machine learning. MIT Press Ltd., Cambridge
MATH
Google Scholar
Ong CS, Mary X, Canu S, Smola AJ (2004) Learning with non-positive kernels. In: Proceedings of the twenty-first international conference on machine learning (ICML ’04), New York, NY, USA. ACM, pp 81–88
Pawlik M, Augsten N (2015) Efficient computation of the tree edit distance. ACM Trans Database Syst 40(1):1–40
MathSciNet
Article
Google Scholar
Pawlik M, Augsten N (2016) Tree edit distance: robust and memory-efficient. Inf Syst 56:157–173
Article
Google Scholar
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, Cambridge
MATH
Google Scholar
Reeves CR (1999) Landscapes, operators and heuristic search. Ann Oper Res 86:473–490
MathSciNet
Article
Google Scholar
Schiavinotto T, Stützle T (2007) A review of metrics on permutations for search landscape analysis. Comput Oper Res 34(10):3143–3153
Article
Google Scholar
Schleif F-M, Tino P (2015) Indefinite proximity learning: a review. Neural Comput 27(10):2039–2096
MathSciNet
Article
Google Scholar
Schleif F-M, Tino P (2017) Indefinite core vector machine. Pattern Recognit 71:187–195
Article
Google Scholar
Schölkopf B (2001) The kernel trick for distances. In: Leen TK, Dietterich TG, Tresp V (eds) Advances in neural information processing systems, vol 13. MIT Press, Cambridge, pp 301–307
Google Scholar
Sevaux M, Sörensen K (2005) Permutation distance measures for memetic algorithms with population management. In: Proceedings of 6th metaheuristics international conference (MIC’05), University of Vienna, pp. 832–838
Singhal A (2001) Modern information retrieval: a brief overview. IEEE Bull Data Eng 24(4):35–43
Google Scholar
Smola AJ, Ovári ZL, Williamson RC (2000) Regularization with dot-product kernels. In: Advances in neural information processing systems vol 13, Proceedings. MIT Press, pp 308–314
van der Loo MP (2014) The stringdist package for approximate string matching. R J 6(1):111–122
Article
Google Scholar
Vapnik VN (1998) Statistical learning theory, vol 1. Wiley, New York
MATH
Google Scholar
Voutchkov I, Keane A, Bhaskar A, Olsen TM (2005) Weld sequence optimization: the use of surrogate models for solving sequential combinatorial problems. Comput Methods Appl Mech Eng 194(30–33):3535–3551
Article
Google Scholar
Wagner RA, Fischer MJ (1974) The string-to-string correction problem. J ACM 21(1):168–173
MathSciNet
Article
Google Scholar
Wu G, Chang EY, Zhang Z (2005) An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22nd international conference on machine learning
Zaefferer M, Bartz-Beielstein T (2016) Efficient global optimization with indefinite kernels. In: Parallel problem solving from nature-PPSN XIV. Springer, pp 69–79
Zaefferer M, Stork J, Bartz-Beielstein T (2014a) Distance measures for permutations in combinatorial efficient global optimization. In: Bartz-Beielstein T, Branke J, Filipič B, Smith J (eds) Parallel problem solving from nature-PPSN XIII. Springer, Cham, pp 373–383
Chapter
Google Scholar
Zaefferer M, Stork J, Friese M, Fischbach A, Naujoks B, Bartz-Beielstein T (2014b) Efficient global optimization for combinatorial problems. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO ’14), New York, NY, USA. ACM, pp 871–878
Zhan X (2006) Extremal eigenvalues of real symmetric matrices with entries in an interval. SIAM J Matrix Anal Appl 27(3):851–860
MathSciNet
Article
Google Scholar