Sparse analytic hierarchy process: an experimental analysis

Abstract

The aim of the sparse analytic hierarchy process (SAHP) problem is to rank a set of alternatives based on their utility/importance; this task is accomplished by asking human decision-makers to compare selected pairs of alternatives and to specify relative preference information, in the form of ratios of utilities. However, such an information is often affected by subjective biases or inconsistencies. Moreover, there is no general consent on the best approach to accomplish this task, and in the literature several techniques have been proposed. Finally, when more than one decision-maker is involved in the process, there is a need to provide adequate methodologies to aggregate the available information. In this view, the contribution of this paper to the SAHP body of knowledge is twofold. From one side, it develops a novel methodology to aggregate sparse data given by multiple sources of information. From another side, the paper undertakes an experimental validation of the most popular techniques to solve the SAHP problem, discussing the strength points and shortcomings of the different methodology with respect to a real case study.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Achlioptas D, Molloy M, Moore C, Van Bussel F (2005) Rapid mixing for lattice colourings with fewer colours. J Stat Mech Theory Exp 2005(10):P10012

    Article  Google Scholar 

  2. Aczél J, Saaty TL (1983) Procedures for synthesizing ratio judgements. J Math Psychol 27(1):93–102

    MathSciNet  Article  MATH  Google Scholar 

  3. Alcaraz C, Lopez J (2014) WASAM: A dynamic wide-area situational awareness model for critical domains in smart grids. Future Gener Comput Syst 30:146–154

    Article  Google Scholar 

  4. Barzilai J, Golany B (1994) Ahp rank reversal, normalization and aggregation rules. Inf Syst Oper Res 32(2):57–64

    MATH  Google Scholar 

  5. Barzilai J, Cook WD, Golany B (1987) Consistent weights for judgements matrices of the relative importance of alternatives. Oper Res Lett 6(3):131–134

    MathSciNet  Article  MATH  Google Scholar 

  6. Beg I, Rashid T (2014) Multi-criteria trapezoidal valued intuitionistic fuzzy decision making with Choquet integral based TOPSIS. Opsearch 51(1):98–129

    MathSciNet  Article  MATH  Google Scholar 

  7. Bessi A, Coletto M, Davidescu GA, Scala A, Caldarelli G, Quattrociocchi W (2015) Science vs conspiracy: collective narratives in the age of misinformation. PLoS ONE 10(2):e0118093

    Article  Google Scholar 

  8. Bozóki S, Tsyganok V (2017) The logarithmic least squares optimality of the geometric mean of weight vectors calculated from all spanning trees for (in) complete pairwise comparison matrices. arXiv preprint arXiv:1701.04265

  9. Carmone FJ, Kara A, Zanakis SH (1997) A monte carlo investigation of incomplete pairwise comparison matrices in AHP. Eur J Oper Res 102(3):538–553

    Article  MATH  Google Scholar 

  10. Chen C-T (2000) Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst 114(1):1–9

    Article  MATH  Google Scholar 

  11. Chen S-J, Hwang C-L, Hwang FP (2011) Fuzzy multiple attribute decision making (methods and applications). Lecture notes in economics and mathematical systems

  12. Crawford GB (1987) The geometric mean procedure for estimating the scale of a judgement matrix. Math Model 9(3–5):327–334

    Article  MATH  Google Scholar 

  13. Davis JM (1958) The transitivity of preferences. Behav Sci 3(1):26–33

    Article  Google Scholar 

  14. Dolan JG, Isselhardt BJ, Cappuccio JD (1989) The analytic hierarchy process in medical decision making: a tutorial. Med Decis Mak 9(1):40–50

    Article  Google Scholar 

  15. Dyer JS (1990) Remarks on the analytic hierarchy process. Manag Sci 36(3):249–258

    MathSciNet  Article  Google Scholar 

  16. Dyer M, Greenhill C, Ullrich M (2014) Structure and eigenvalues of heat-bath markov chains. Linear Algebra Appl 454:57–71

    MathSciNet  Article  MATH  Google Scholar 

  17. Escobar MT, Aguarón J, Moreno-Jiménez JM (2004) A note on AHP group consistency for the row geometric mean priorization procedure. Eur J Oper Res 153(2):318–322

    Article  MATH  Google Scholar 

  18. Fax AJ, Murray RM (2004) Information flow and cooperative control of vehicle formations. IEEE Trans Autom Control 49(9):1465–1476

    MathSciNet  Article  MATH  Google Scholar 

  19. Fedrizzi M, Giove S (2007) Incomplete pairwise comparison and consistency optimization. Eur J Oper Res 183(1):303–313

    Article  MATH  Google Scholar 

  20. Forman EH (1990) Multi criteria decision making and the analytic hierarchy process. Springer, Berlin, pp 295–318

    Google Scholar 

  21. Gilks WR, Richardson S, Spiegelhalter D (1995) Markov chain Monte Carlo in practice. CRC Press, London

    Google Scholar 

  22. Häggström O (2002) Finite Markov chains and algorithmic applications, vol 52. Cambridge University Press, Cambridge

    Google Scholar 

  23. Harker PT (1987a) Alternative modes of questioning in the analytic hierarchy process. Math Model 9(3–5):353–360

    MathSciNet  Article  MATH  Google Scholar 

  24. Harker PT (1987b) Incomplete pairwise comparisons in the analytic hierarchy process. Math Model 9(11):837–848

    MathSciNet  Article  Google Scholar 

  25. Hastings KW (1970) Monte carlo sampling methods using markov chains and their applications. Biometrika 57(1):97–109

    MathSciNet  Article  MATH  Google Scholar 

  26. Hummel JM, IJzermann MJ (2009) The use of the analytic hierarchy process in health care decision making. University of Twente, Enschede

    Google Scholar 

  27. Kendall MG (1938) A new measure of rank correlation. Biometrika 30(1/2):81–93

    Article  MATH  Google Scholar 

  28. Liang L, Wang G, Hua Z, Zhang B (2008) Mapping verbal responses to numerical scales in the analytic hierarchy process. Socio-Econ Plan Sci 42(1):46–55

    Article  Google Scholar 

  29. Liberatore MJ, Nydick RL (2008) The analytic hierarchy process in medical and health care decision making: a literature review. Eur J Oper Res 189(1):194–207

    Article  MATH  Google Scholar 

  30. Linstone HA, Turoff M et al (1975) The delphi method. Addison-Wesley, Reading

    Google Scholar 

  31. Menci M, Oliva G, Papi M, Setola R, Scala A (2018) A suite of distributed methodologies to solve the sparse analytic hierarchy process problem. In: 2018th European control conference

  32. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21(6):1087–1092

    Article  Google Scholar 

  33. Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233

    Article  MATH  Google Scholar 

  34. Oliva G, Setola R, Scala A (2017) Sparse and distributed analytic hierarchy process. Automatica 85:211–220

    MathSciNet  Article  MATH  Google Scholar 

  35. Rubio JE, Alcaraz C, Lopez J (2017) Preventing advanced persistent threats in complex control networks. In: European symposium on research in computer security. Springer, pp 402–418

  36. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281

    MathSciNet  Article  MATH  Google Scholar 

  37. Saaty TL (1990) An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Manag Sci 36(3):259–268

    Article  Google Scholar 

  38. Shiraishi S, Obata T, Daigo M (1998) Properties of a positive reciprocal matrix and their application to AHP. J Oper Res Soc Jpn 41(3):404–414

    MathSciNet  Article  MATH  Google Scholar 

  39. Van Brummelen G (2012) Heavenly mathematics: the forgotten art of spherical trigonometry. Princeton University Press, Princeton

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gabriele Oliva.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by P. Beraldi, M. Boccia, C. Sterle.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliva, G., Setola, R., Scala, A. et al. Sparse analytic hierarchy process: an experimental analysis. Soft Comput 23, 2887–2898 (2019). https://doi.org/10.1007/s00500-018-3401-9

Download citation

Keywords

  • Analytic hierarchy process
  • Sparse information
  • Decision-making