Skip to main content
Log in

Sparse two-dimensional discriminant locality-preserving projection (S2DDLPP) for feature extraction

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript


Two-dimensional locality-preserving projection (2DLPP) is an unsupervised method, so it can’t use the discrimination information of the sample in the sparse data; elastic net regression can obtain a sparse results of the feature extraction. So, this paper presents a new method for image feature extraction, namely the sparse two-dimensional discriminant locality-preserving projection (S2DDLPP) based on the 2D discriminant locality-preserving projection (2DDLPP) and elastic net regression. By adding the between-class scatter and discrimination information into the objective function of 2DLPP, S2DDLPP uses elastic net regression to obtain an optimal sparse projection matrix with “minimizing the within-class scatter” and “maximizing the between-class scatter.” Compared with other methods (2DPCA, 2DPCA-L1, 2DLDA, 2DLPP, 2DDLPP, and 2DDLPP-L1), the experimental results on the ORL, Yale, AR and FERET face database show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others


  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  • Chao J, Steinbach E (2016) Keypoint encoding for improved feature extraction from compressed video at low bitrates. IEEE Trans Multimedia 18(1):25–39

    Article  Google Scholar 

  • Chen BC, Chen CS, Hsu WH (2015) Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. IEEE Trans Multimedia 17(6):804–815

    Article  Google Scholar 

  • Efron B, Hastie T, Johnstone I et al (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  • He X, Yan S, Hu Y, Niyogi P, Zhang HJ (2005) Face recognition using Laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  • Hu D, Feng G, Zhou Z (2007) Two-dimensional locality preserving projections (2DLPP) with its application to palmprint recognition. Pattern Recognit 40:339–342

    Article  MATH  Google Scholar 

  • Jian M, Jung C (2016) Semi-supervised bi-dictionary learning for image classification with smooth representation-based label propagation. IEEE Trans Multimedia 18(3):458–473

    Article  Google Scholar 

  • Kwak N (2008) Principal component analysis based on L1-norm maximization. IEEE Trans Pattern Anal Mach Intell 30(9):1672–1680

    Article  Google Scholar 

  • Lai Z, Wong WK, Xu Y et al (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735

    Article  MathSciNet  Google Scholar 

  • Lai Z, Yong X, Jian Y et al (2017) Rotational invariant dimensionality reduction algorithms. IEEE Trans Cybern 47(11):3733–3746

    Article  Google Scholar 

  • Lee DD, Seung HS (1999) Learning the parts of objects by nonnegative matrix factorization. Nature 401:788–791

    Article  MATH  Google Scholar 

  • Li X, Pang Y (2010) Deterministic column-based matrix decomposition. IEEE Trans Knowl Data Eng 22(1):145–149

    Article  MathSciNet  Google Scholar 

  • Li X, Pang Y, Yuan Y (2009) L1-norm-based 2DPCA. IEEE Trans Syst Man Cybern B Cybern 40(4):1170–1175

    Google Scholar 

  • Lu Y, Lai Z, Xu Y et al (2017) Nonnegative discriminant matrix factorization. IEEE Trans Circuits Syst Video Technol 27(7):1392–1405

    Article  Google Scholar 

  • Luo C, Ni B, Yan S, Wang M (2016) Image classification by selective regularized subspace learning. IEEE Trans Multimedia 18(1):40–50

    Article  Google Scholar 

  • Ma S, Zhang X, Wang S et al (2017) Entropy of primitive: from sparse representation to visual information evaluation. IEEE Trans Circuits Syst Video Technol 27(2):249–260

    Article  Google Scholar 

  • Nie F, Xu D, Tsang WH, Zhang C (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction. IEEE Trans Image Process 19(7):1921–1932

    Article  MathSciNet  MATH  Google Scholar 

  • Nie F, Yuan J, Huang H (2014) Optimal mean robust principal component analysis. In: Proceedings of the international conference on international conference on machine learning, pp 1062–1070

  • Nie F, Wang H, Huang H, Ding C (2015) Joint Schatten, p-norm and LP-norm robust matrix completion for missing value recovery. Knowl Inf Syst 42(3):525–544

    Article  Google Scholar 

  • Nie F, Zhu W, Li X (2017) Unsupervised large graph embedding. In: Proceedings of 31st AAAI conference on artificial intelligence, San Francisco, CA, pp 2422–2428

  • Pang Y, Tao D, Yuan Y, Li X (2008) Binary two-dimensional PCA. IEEE Trans Syst Man Cybern B Cybern 38(4):1176–1180

    Article  Google Scholar 

  • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  • Song Y (2009) Orthogonal locality minimizing globality maximizing projections for feature extraction. Opt Eng 48(1):017202–017202-5

  • Swets D, Weng J (1996) Using discriminant eigenfeatures for image retrieval. IEEE Trans Pattern Anal Mach Intell 18:831–836

    Article  Google Scholar 

  • Tang Y, Zhang Z, Zhang Y, Li F (2016) Robust L1-norm matrixed locality preserving projection for discriminative subspace learning. In: Proceedings of international joint conference on neural networks, pp 4199–4204

  • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  • Turk M, Pentland A (1991) Eigenfaces for recognition. Cogn Neurosci 3:71–86

    Article  Google Scholar 

  • Wagner A, Wright J, Ganesh A et al (2012) Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans Pattern Anal Mach Intell 34(2):372–386

    Article  Google Scholar 

  • Wan M, Lai Z (2017) Multi-manifold locality graph embedding based on the maximum margin criterion (MLGE/MMC) for face recognition. IEEE Access 5:9823–9830

    Article  Google Scholar 

  • Wan M, Lai Z, Shao J, Jin Z (2009) Two-dimensional local graph embedding discriminant analysis (2DLGEDA) with its application to face and palm biometrics. Neurocomputing 73:193–203

    Article  Google Scholar 

  • Wan M, Lai Z, Yang G et al (2017) Local graph embedding based on maximum margin criterion via fuzzy set. Fuzzy Sets Syst 318:120–131

    Article  MathSciNet  Google Scholar 

  • Wang L, Cheng H, Liu Z et al (2014a) A robust elastic net approach for feature learning. J Vis Commun Image Represent 25(2):313–321

    Article  Google Scholar 

  • Wang H, Lu X, Hu Z, Zheng W (2014b) Fisher discriminant analysis with L1-norm. IEEE Trans Cybern 44(6):828–842

    Article  Google Scholar 

  • Wang Q, Chen F, Gao Q, Gao X, Nie F (2016) On the schatten norm for matrix based subspace learning and classification. Neurocomputing 216:192–199

    Article  Google Scholar 

  • Yang J, Zhang D, Frangi AF, Yang J-Y (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  • Yang J, Zhang D, Xu Y, Yang JY (2005) Two-dimensional discriminant transform for face recognition. Pattern Recognit 38(7):1125–1129

    Article  MATH  Google Scholar 

  • Yu W (2009) Face recognition using two-dimensional discriminant locality preserving projections. Pattern Recognit Lett 30(15):1378–1383

    Article  Google Scholar 

  • Zhao HX, Xing HJ, Wang XZ, Chen JF(2011) L1-norm-based 2DLPP. In: Proceedings of Chinese conference on control and decision, pp 1259–1264

  • Zhi R, Ruan Q (2008) Facial expression recognition based on two-dimensional discriminant locality preserving projections. Neurocomputing 71(7–9):1730–1734

    Article  Google Scholar 

  • Zhou Y, Sun S (2017) Manifold partition discriminant analysis. IEEE Trans Cybern 47(4):830–840

    Article  Google Scholar 

  • Zou H, Hastie T (2003) Regression shrinkage and selection via the elastic net, with applications to microarrays. J R Stat Soc Ser B 67:301–320

    Article  Google Scholar 

Download references


This work is partially supported by National Key R&D Program Grant No. 2017YFC0804002, the National Science Foundation of China under Grant Nos. 61462064, 6177227, 61362031, 61463008, 61403188, 61503195, 61603192, and the China Postdoctoral Science Foundation under Grant No. 2016M600674, the Natural Science Fund of Jiangsu Province under Grants BK20161580, BK20171494 and China’s Aviation Science (No. 20145556011).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Minghua Wan.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Communicated by V. Loia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, M., Yang, G., Sun, C. et al. Sparse two-dimensional discriminant locality-preserving projection (S2DDLPP) for feature extraction. Soft Comput 23, 5511–5518 (2019).

Download citation

  • Published:

  • Issue Date:

  • DOI: