Belluce LP, Di Nola A, Ferraioli AR (2013) MV-semirings and their sheaf representations. Order 30(1):165–179
MathSciNet
Article
MATH
Google Scholar
Beran L (2011) Orthomodular lattices: an algebraic approach. Mathematics and its applications. Springer, Netherlands
Google Scholar
Bonzio S, Chajda I, Ledda A (2016) Representing quantum structures as near semirings. Logic J IGPL 24(5):719–742
MathSciNet
Article
MATH
Google Scholar
Chajda I (2012) Basic algebras and their applications. An overview. In: Czermak J et al (eds) Proceedings of 81st workshop on general algebra, Salzburg, Austria, 2011. Johannes Heyn, Klagenfurt, pp 1–10
Chajda I, Länger H (2015) Commutative basic algebras and coupled near semirings. Soft Comput 19:1129–1134
Article
MATH
Google Scholar
Chajda I, Länger H (2017) A representation of lattice effect algebras by means of right near semirings with involution. Int J Theor Phys 56:3719–3726
MathSciNet
Article
MATH
Google Scholar
Dalla Chiara ML, Giuntini R, Greechie R (2004) Reasoning in quantum theory: sharp and unsharp quantum logic. Kluwer, Dordrecht
Book
MATH
Google Scholar
Dvurečenskij A (2001) Pseudo MV algebras are intervals in \(\ell \)-groups. J Aust Math Soc 72:427–445
MathSciNet
Article
MATH
Google Scholar
Dvurečenskij A (2015) Lexicographic pseudo MV-algebras. J Appl Logic 13:825–841
MathSciNet
Article
MATH
Google Scholar
Dvurečenskij A, Pulmannová S (2000) New trends in quantum structures. Mathematics and its applications. Kluwer, Dordrecht
Book
MATH
Google Scholar
Dvurečenskij A, Vetterlein T (2001a) Pseudoeffect algebras I, basic properties. Int J Theor Phys 40:685–701
MathSciNet
Article
MATH
Google Scholar
Dvurečenskij A, Vetterlein T (2001b) Pseudoeffect algebras II, group representations. Int J Theor Phys 40:703–726
MathSciNet
Article
MATH
Google Scholar
Dvurečenskij A, Vetterlein T (2004) Non-commutative algebras and quantum structures. Int J Theor Phys 43(7/8):15–63
MathSciNet
MATH
Google Scholar
Foulis DJ, Bennett MK (1994) Effect algebras and unsharp quantum logics. Found Phys 24:719–742
MathSciNet
Article
MATH
Google Scholar
Foulis DJ, Pulmannová S, Vincenková E (2011) Lattice pseudoeffect algebras as double residuated structures. Soft Comput 12:2479–2488
Article
MATH
Google Scholar
Georgescu G, Iorgulescu A (2001) Pseudo MV-algebras. Mult Valued Logic 6:95–135
MathSciNet
MATH
Google Scholar
Giuntini R, Greuling H (1989) Toward a formal language for unsharp properties. Found Phys 19:931–945
MathSciNet
Article
Google Scholar
Głazek K (2002) A guide to the literature on semirings and their applications in mathematics and information sciences. Springer, Berlin
MATH
Google Scholar
Kadji A, Lele C, Nganou JB (2016) A non-commutative generalization of Łukasiewicz rings. J Appl Logic 16:1–13
MathSciNet
Article
MATH
Google Scholar
Kalmbach G (1983) Orthomodular lattices, volume 18 of London mathematical society monographs. Academic Press, London
Google Scholar
Mundici D (1986) Interpretation of AFC\(^*\)-algebras in Łukasiewicz sentential calculus. J Funct Anal 65:15–63
MathSciNet
Article
MATH
Google Scholar
Rachůnek J (2001) A non-commutative generalization of MV-algebras. Czechoslov Math J 52:255–273
MathSciNet
Article
MATH
Google Scholar
Vitolo P (2010) Compatibility and central elements in pseudo-effect algebras. Kybernetica 46(6):996–1008
MathSciNet
MATH
Google Scholar