Butterfly optimization algorithm: a novel approach for global optimization

Abstract

Real-world problems are complex as they are multidimensional and multimodal in nature that encourages computer scientists to develop better and efficient problem-solving methods. Nature-inspired metaheuristics have shown better performances than that of traditional approaches. Till date, researchers have presented and experimented with various nature-inspired metaheuristic algorithms to handle various search problems. This paper introduces a new nature-inspired algorithm, namely butterfly optimization algorithm (BOA) that mimics food search and mating behavior of butterflies, to solve global optimization problems. The framework is mainly based on the foraging strategy of butterflies, which utilize their sense of smell to determine the location of nectar or mating partner. In this paper, the proposed algorithm is tested and validated on a set of 30 benchmark test functions and its performance is compared with other metaheuristic algorithms. BOA is also employed to solve three classical engineering problems (spring design, welded beam design, and gear train design). Results indicate that the proposed BOA is more efficient than other metaheuristic algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Arora JS (2004) Introduction to optimum design. Elsevier Academic Press, England

    Google Scholar 

  2. Arora S, Singh S (2013a) The firefly optimization algorithm: convergence analysis and parameter selection. Int J Comput Appl 69(3):48–52

    Google Scholar 

  3. Arora S, Singh S (2013b) A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search. In: 2013 international conference on control computing communication and materials (ICCCCM), IEEE, pp 1–4

  4. Arora S, Singh S, Singh S, Sharma B (2014) Mutated firefly algorithm. In: 2014 international conference on parallel, distributed and grid computing (PDGC), IEEE, pp 33–38

  5. Back T (1996) Evolutionary algorithms in theory and practice. Oxford University Press, Oxford

    Google Scholar 

  6. Baird JC, Noma EJ (1978) Fundamentals of scaling and psychophysics. Wiley, Hoboken

    Google Scholar 

  7. Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural optimization. Part I: theory. Int J Numer Methods Eng 21(9):1583–1599

    MATH  Article  Google Scholar 

  8. Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban grandient. Biol Conserv 80(1):113–125

    Article  Google Scholar 

  9. Brownlee J (2011) Clever algorithms: nature-inspired programming recipes, 1st edn. LuLu. ISBN 978-1-4467-8506-5

  10. Cao Y, Wu Q (1997) Mechanical design optimization by mixed-variable evolutionary programming. In: IEEE conference on evolutionary computation, IEEE Press, p 443–446

  11. Coello CAC (2000a) Use of a self-adaptive penalty approach for engineering optimization problems. Comput Ind 41(2):113–127

    Article  Google Scholar 

  12. Coello CA (2000b) Constraint-handling using an evolutionary multiobjective optimization technique. Civil Eng Syst 17(4):319–346

    Article  Google Scholar 

  13. Coello CAC, Montes EM (2002) Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Adv Eng Inform 16(3):193–203

    Article  Google Scholar 

  14. Deb K (1991) Optimal design of a welded beam via genetic algorithms. AIAA J 29(11):2013–2015

    Article  Google Scholar 

  15. Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2):311–338

    MATH  Article  Google Scholar 

  16. Deb K, Goyal M (1996) A combined genetic adaptive search (GeneAS) for engineering design. Comput Sci Inf 26:30–45

    Google Scholar 

  17. Eberhart RC, Shi Y (2001) Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 congress on evolutionary computation, 2001, vol 1. IEEE, pp 81–86

  18. Fister I Jr, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186

  19. Fu J-F, Fenton RG, Cleghorn WL (1991) A mixed integer-discrete-continuous programming method and its application to engineering design optimization. Eng Optim 17(4):263–280

    Article  Google Scholar 

  20. Gandomi AH, Yang X-S, Alavi AH (2013a) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17–35

    Article  Google Scholar 

  21. Gandomi AH, Yun GJ, Yang X-S, Talatahari S (2013) Chaos-enhanced accelerated particle swarm optimization. Commun Nonlinear Sci Numer Simul 18(2):327–340

    MathSciNet  MATH  Article  Google Scholar 

  22. Gazi V, Passino KM (2004) Stability analysis of social foraging swarms. Syst Man Cybern Part B: Cybern IEEE Trans 34(1):539–557

    Article  Google Scholar 

  23. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2):95–99

    Article  Google Scholar 

  24. Gupta S, Arora S (2015) A hybrid firefly algorithm and social spider algorithm for multimodal function. Intell Syst Technol Appl 1:17

    Google Scholar 

  25. He Q, Wang L (2007) An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng Appl Artif Intell 20(1):89–99

    Article  Google Scholar 

  26. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, Cambridge

    Google Scholar 

  27. Huang F-Z, Wang L, He Q (2007) An effective co-evolutionary differential evolution for constrained optimization. Appl Math Comput 186(1):340–356

    MathSciNet  MATH  Google Scholar 

  28. Kalra S, Arora S (2016) Firefly algorithm hybridized with flower pollination algorithm for multimodal functions. In: Proceedings of the international congress on information and communication technology, Springer, Singapore, pp 207–219

  29. Kannan B, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design. J Mech Des 116(2):405–411

    Article  Google Scholar 

  30. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J Glob Optim 39(3):459–471

    MathSciNet  MATH  Article  Google Scholar 

  31. Karaboga D, Basturk B (2008) On the performance of artificial bee colony (abc) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  32. Kennedy J (2010) Particle swarm optimization. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning. Springer, Boston, MA

    Google Scholar 

  33. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Methods Appl Mech Eng 194(36):3902–3933

    MATH  Article  Google Scholar 

  34. Liang JJ, Qu BY, Suganthan PN, Hernández-Díaz AG (2013) Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212, 3–18

  35. Loh HT, Papalambros PY (1991) A sequential linearization approach for solving mixed-discrete nonlinear design optimization problems. J Mech Des 113(3):325–334

    Article  Google Scholar 

  36. MacKay D (1963) Psychophysics of perceived intensity: a theoretical basis for fechner’s and stevens’ laws. Science 139(3560):1213–1216

    Article  Google Scholar 

  37. Maesono Y (1987) Competitors of the wilcoxon signed rank test. Ann Inst Stat Math 39(1):363–375

    MathSciNet  MATH  Article  Google Scholar 

  38. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579

    MathSciNet  MATH  Google Scholar 

  39. Mezura-Montes E, Coello CAC (2008) An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int J Gen Syst 37(4):443–473

    MathSciNet  MATH  Article  Google Scholar 

  40. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  41. Onwubolu GC, Babu B (2004) New optimization techniques in engineering, vol 141. Springer, Berlin

    Google Scholar 

  42. Parsopoulos KE, Vrahatis MN (2005) Unified particle swarm optimization for solving constrained engineering optimization problems. In: Wang L, Chen K, Ong YS (eds) Advances in natural computation. Springer, Berlin, pp 582–591

    Google Scholar 

  43. Pollard E, Yates TJ (1994) Monitoring butterflies for ecology and conservation: the British butterfly monitoring scheme. Springer, Berlin

    Google Scholar 

  44. Ragsdell K, Phillips D (1976) Optimal design of a class of welded structures using geometric programming. J Manuf Sci Eng 98(3):1021–1025

    Google Scholar 

  45. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Ann Rev Ecol Evolut Syst 39:549–569

    Article  Google Scholar 

  46. Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    MATH  Article  Google Scholar 

  47. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392(6675):491–494

    Article  Google Scholar 

  48. Sandgren E (1990) Nonlinear integer and discrete programming in mechanical design optimization. J Mech Des 112(2):223–229

    Article  Google Scholar 

  49. Shilane D, Martikainen J, Dudoit S, Ovaska SJ (2008) A general framework for statistical performance comparison of evolutionary computation algorithms. Inf Sci 178(14):2870–2879

    Article  Google Scholar 

  50. Stevens SS (1975) Psychophysics. Transaction Publishers, Routledge

    Google Scholar 

  51. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    MathSciNet  MATH  Article  Google Scholar 

  52. Talbi E-G (2009) Metaheuristics: from design to implementation, vol 74. Wiley, Hoboken

    Google Scholar 

  53. Wang G-G, Deb S, Cui Z (2015) Monarch butterfly optimization. Neural Comput Applic. https://doi.org/10.1007/s00521-015-1923-y

  54. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3–4):853–871

    Article  Google Scholar 

  55. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evolut Comput 1(1):67–82

    Article  Google Scholar 

  56. Wyatt TD (2003) Pheromones and animal behaviour: communication by smell and taste. Cambridge University Press, Cambridge

    Google Scholar 

  57. Yang X-S, Deb S (2009) Cuckoo search via lévy flights. In: World congress on nature and biologically inspired computing, NaBIC 2009, IEEE, pp 210–214

  58. Yang X-S (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. SAGA 2009. Lecture Notes in Computer Science, vol 5792. Springer, Berlin, Heidelberg

  59. Yang X-S (2010a) Nature-inspired metaheuristic algorithms. Luniver press, Beckington

    Google Scholar 

  60. Yang X-S (2010b) Firefly algorithm, levy flights and global optimization. In: Bramer M, Ellis R, Petridis M (eds) Research and development in intelligent systems XXVI. Springer, Berlin, pp 209–218

    Google Scholar 

  61. Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. Evolut Comput IEEE Trans 3(2):82–102

    Article  Google Scholar 

  62. Zhang C, Wang H (1993) Mixed-discrete nonlinear optimization with simulated annealing. Eng Optim 21:277–91

    Article  Google Scholar 

  63. Zwislocki JJ (2009) Sensory neuroscience: four laws of psychophysics: four laws of psychophysics. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contribution of I. K. Gujral Punjab Technical University, Kapurthala, Punjab, India.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sankalap Arora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Singh, S. Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23, 715–734 (2019). https://doi.org/10.1007/s00500-018-3102-4

Download citation

Keywords

  • Butterfly optimization algorithm
  • Global optimization
  • Nature inspired
  • Metaheuristic
  • Benchmark test functions
  • Engineering design problems