Biometric iris recognition using radial basis function neural network


The consistent and efficient method for the identification of biometrics is the iris recognition in view of the fact that it has richness in texture information. A good number of features performed in the past are built on handcrafted features. The proposed method is based on the feed-forward architecture and uses k-means clustering algorithm for the iris patterns classification. In this paper, segmentation of iris is performed using the circular Hough transform that realizes the iris boundaries in the eye and isolates the region of iris with no eyelashes and other constrictions. Moreover, Daugman’s rubber sheet model is used to transform the resultant iris portion into polar coordinates in the process of normalization. A unique iris code is generated by log-Gabor filter to extract the features. The classification is achieved using neural network structures, the feed-forward neural network and the radial basis function neural network. The experiments have been conducted using the Chinese Academy of Sciences Institute of Automation (CASIA) iris database. The proposed system decreases computation time, size of the database and increases the recognition accuracy as compared to the existing algorithms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. Abhyankar A, Hornak L, Schuckers S (2005) Off-angle iris recognition using bi-orthogonal wavelet network system. In: Fourth IEEE workshop on automatic identification advanced technologies, 2005. IEEE, Washington, pp 239–244

  2. Abiyev RH, Altunkaya K (2008) Personal iris recognition using neural network. Int J Secur Appl 2(2):41–50

    Google Scholar 

  3. Basit A, Javed MY, Anjum MA (2005) Biometric-enabled authentication machines: a survey of open-set real-world applications. WEC 2:24–26

    Google Scholar 

  4. Boles WW, Boashash B (1998) A human identification technique using images of the iris and wavelet transform. IEEE Trans Signal Process 46(4):1185–1188

    Article  Google Scholar 

  5. Chawla S, Oberoi A (2011) A robust algorithm for iris segmentation and normalization using hough transform. Glob J Bus Manag Inf Technol 1(2):69–76

    Google Scholar 

  6. Chen X (2017) An effective synchronization clustering algorithm. Appl Intell 46(1):135–157

    Article  Google Scholar 

  7. Cho DH, Park KR, Rhee DW (2005) Real-time iris localization for iris recognition in cellular phone. In: Sixth international conference on software engineering, artificial intelligence, networking and parallel/distributed computing, 2005 and first ACIS international workshop on self-assembling wireless networks. SNPD/SAWN 2005. IEEE, Washington, pp 254–259

  8. Daouk CH, El-Esber LA, Kammoun FD, Al Alaoui MA (2002) Iris recognition. In: IEEE ISSPIT, pp 558–562

  9. Daugman J (1992) High confidence personal identification by rapid video analysis of iris texture. In: International Carnahan conference on security technology, 1992 Crime countermeasures, proceedings. Institute of electrical and electronics engineers. IEEE, Washington, pp 50–60

  10. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161

    Article  Google Scholar 

  11. Daugman JG (1994) U.S. Patent No. 5,291,560. Washington, DC: U.S. Patent and Trademark Office. In: Jain A, Bolle R, Pankanti S (eds) Biometrics: personal identification in a networked society. Kluwer, Norwell

  12. Daugman J (2001) Statistical richness of visual phase information: update on recognizing persons by iris patterns. Int J Comput Vis 45(1):25–38

    Article  Google Scholar 

  13. Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol 14(1):21–30

    Article  Google Scholar 

  14. Daugman J (2007) New methods in iris recognition. IEEE Trans Syst Man Cybern Part B Cybern 37(5):1167–1175

    Article  Google Scholar 

  15. Daugman J (2016) Information theory and the iris code. IEEE Trans Inf Forensics Secur 11(2):400–409

    Article  Google Scholar 

  16. Eastwood SC, Shmerko VP, Yanushkevich SN, Drahansky M, Gorodnichy DO (2016) Biometric-enabled authentication machines: a survey of open-set real-world applications. IEEE Trans Hum Mach Syst 46(2):231–242

    Article  Google Scholar 

  17. Galbally J, Marcel S, Fierrez J (2014) Image quality assessment for fake biometric detection: application to iris, fingerprints, and face recognition. IEEE Trans Image Process 23(2):710–724

    MathSciNet  Article  Google Scholar 

  18. Gupta K, Gupta R (2014) Iris recognition system for smart environments. In: 2014 international conference on data mining and intelligent computing (ICDMIC). IEEE, Washington, pp 1–6

  19. Gupta R, Gupta K (2016) Iris recognition using templates fusion with weighted majority voting. Int J Image Data Fus 7(4):325–338

    Article  Google Scholar 

  20. Haddouch K, Elmoutaoukil K, Ettaouil M (2016) Solving the weighted constraint satisfaction problems via the neural network approach. IJIMAI 4(1):56–60

    Article  Google Scholar 

  21. Hu Y, Sirlantzis K, Howells G (2017) Optimal generation of iris codes for iris recognition. IEEE Trans Inf Forensics Secur 12(1):157–171

    Article  Google Scholar 

  22. Hurtado MF, Langreo MH, De Miguel PM, Villanueva VD (2010) Biometry, the safe key. Int J Interact Multimed Artif Intell 1(3):33–37

    Google Scholar 

  23. Jain AK, Ross A, Prabhakar S (2004) An introduction to biometric recognition. IEEE Trans Circuits Syst Video Technol 14(1):4–20

    Article  Google Scholar 

  24. Kushwaha P, Welekar RR (2016) Feature selection for image retrieval based on genetic algorithm. IJIMAI 4(2):16–21

    Article  Google Scholar 

  25. Kyaw KSS (2009) Iris recognition system using statistical features for biometric identification. In: 2009 international conference on electronic computer technology. IEEE, Washington, pp 554–556

  26. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  27. López FRJ, Beainy CEP, Mendez OEU (2013) Biometric iris recognition using Hough transform. In: 2013 XVIII symposium of image, signal processing, and artificial vision (STSIVA). IEEE, Washington, pp 1–6

  28. Ma L, Tan T, Wang Y, Zhang D (2004) Efficient iris recognition by characterizing key local variations. IEEE Trans Image Process 13(6):739–750

    Article  Google Scholar 

  29. Masek L (2003) Recognition of human iris patterns for biometric identification, vol 26. Techreport.

  30. Mock K, Hoanca B, Weaver J, Milton M (2012) Real-time continuous iris recognition for authentication using an eye tracker. In: Proceedings of the 2012 ACM conference on computer and communications security. ACM, New York, pp 1007–1009

  31. Nguyen Thanh K, Fookes CB, Sridharan S (2010) Fusing shrinking and expanding active contour models for robust IRIS segmentation. In: Proceedings of 10th international conference on information science, signal processing and their applications. IEEE, Washington, pp 185–188

  32. Njikam ANS, Zhao H (2016) A novel activation function for multilayer feed-forward neural networks. Appl Intell 45(1):75–82

    Article  Google Scholar 

  33. Poursaberi A, Yanushkevich S, Gavrilova M, Shmerko V, Wang PSP (2013) Situational awareness through biometrics. IEEE Comput Spec Issue Cut Edge Res Vis 46(5):102–104

    Google Scholar 

  34. Punyani P, Gupta R (2015) Iris recognition system using morphology and sequential addition-based grouping. In: 2015 international conference on futuristic trends on computational analysis and knowledge management (ABLAZE). IEEE, Washington, pp 159–164

  35. Roh MC, Fazli S, Lee SW (2016) Selective temporal filtering and its application to hand gesture recognition. Appl Intell 45(2):255–264

    Article  Google Scholar 

  36. Schlett T, Rathgeb C, Busch C (2018) Multi-spectral iris segmentation in visible wavelengths. In: 2018 international conference on biometrics (ICB). IEEE, Washington

  37. Sharma K, Monga H (2014) Efficient biometric iris recognition using hough transform with secret key. Int J Adv Res Comput Sci Softw Eng 4(7):104–109

    Google Scholar 

  38. Shylaja SS, Murthy KB, Natarajan S, Muthuraj R, Ajay S (2011) Feed forward neural network based eye localization and recognition using Hough transform. IJACSA Editorial

  39. Sundaram RM, Dhara BC (2011) Neural network-based Iris recognition system using Haralick features. In: 2011 3rd international conference on electronics computer technology (ICECT), vol 3. IEEE, Washington, pp 19–23

  40. Tripathi BK (2017) On the complex domain, deep machine learning for face recognition. Appl Intell 47:382–396

    Article  Google Scholar 

  41. Vatsa M, Singh R, Noore A (2007) Integrating image quality in 2ν-SVM biometric match score fusion. Int J Neural Syst 17(05):343–351

    Article  Google Scholar 

  42. Wang Y, Tan T, Jain AK (2003) Combining face and iris biometrics for identity verification. In: International conference on audio-and video-based biometric person authentication. Springer, Berlin, pp 805–813

    Google Scholar 

  43. Wildes RP, Asmuth JC, Green GL, Hsu SC, Kolczynski RJ, Matey JR, MBride SE (1994) A system for automated iris recognition. In: Proceedings of the applications of computer vision, 1994

  44. Xiao Q (2007) Technology review-biometrics-technology, application, challenge, and computational intelligence solutions. IEEE Comput Intell Mag 2(2):5–25

    MathSciNet  Article  Google Scholar 

  45. Yu Q, Luo Y, Chen C, Ding X (2016) Outlier-eliminated k-means clustering algorithm based on differential privacy preservation. Appl Intell 45(4):1179–1191

    Article  Google Scholar 

  46. Zhu Y, Tan T, Wang Y (2000) Biometric personal identification based on iris patterns. In: ICPR. IEEE, p 2801

Download references

Author information



Corresponding author

Correspondence to Ruben González Crespo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dua, M., Gupta, R., Khari, M. et al. Biometric iris recognition using radial basis function neural network. Soft Comput 23, 11801–11815 (2019).

Download citation


  • Biometrics
  • Iris recognition
  • Iris segmentation
  • Normalization
  • Feed-forward neural network (FNN)
  • Radial basis function neural network (RBFNN)