Skip to main content
Log in

A study of similarity measures through the paradigm of measurement theory: the classic case

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Similarity measures are used in various tasks dealing with the management of data or information, such as decision-making, case-based reasoning, cased-based information retrieval, recommendation systems and user profile analysis, to cite but a few. The paper aims at providing information on similarity measures that can help in choosing “a priori” one of them on the basis of the semantics behind this choice. To this end, we study similarity measures from the point of view of the ranking relation they induce on object pairs. Using a classic method of measurement theory, we establish necessary and sufficient conditions for the existence of a particular class of numerical similarity measures, representing a given binary relation among pairs of objects which express the idea of “no more similar than”. The above conditions are all (and only) the rules which are accepted when one decides to evaluate similarity through any element of a specific class of similarity measures. We exemplify the possible application of such conditions and the relevant results on a real-world problem and discuss them in the ambit of cognitive psychology. We consider here a classical context, while the fuzzy context will be studied in a companion paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderberg MR (1973) Cluster analysis for applications. Academic Press, New York

    MATH  Google Scholar 

  • Baioletti M, Coletti G, Petturiti D (2012) Advances in computational intelligence: 14th international conference on information processing and management of uncertainty in knowledge-based systems, IPMU 2012, Catania, Italy, July 9–13, 2012, Proceedings, Part III, Chapter. Weighted attribute combinations based similarity measures. Springer, Berlin, pp 211–220

  • Bertoluzza C, Di Bacco M, Doldi V (2004) An axiomatic characterization of the measures of similarity. Sankhya 66:474–486

    MathSciNet  MATH  Google Scholar 

  • Bhutani KR, Rosenfeld A (2003) Dissimilarity measures between fuzzy sets or fuzzy structures. Inf Sci 152:313–318

    Article  MathSciNet  MATH  Google Scholar 

  • Boriah S, Chandola V, Kumar V (2008) Similarity measures for categorical data: a comparative evaluation. In: Proceedings of the 8th SIAM international conference on data mining, SIAM, pp 243–254

  • Bouchon-Meunier B, Rifqi M, Bothorel S (1996) Towards general measures of comparison of objects. Fuzzy Sets Syst 84:143–153

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchon-Meunier B, Rifqi M, Lesot MJ (2008) Similarities in fuzzy data mining: from a cognitive view to real-world applications. In Zurada J, Yen G, Wang J (eds) Computational intelligence: research frontiers. WCCI 2008, vol 5050. Springer, LNCS, pp 349–367

  • Bouchon-Meunier B, Coletti G, Lesot MJ, Rifqi M (2009) Towards a conscious choice of a similarity measure: a qualitative point of view. In: Sossai C, Ghemello G (eds) Symbolic and quantitative approaches to reasoning with uncertainty: Ecsqaru 2009 proceedings, vol 5590. Springer, LNAI, pp 542–553

  • Bouchon-Meunier B, Coletti G, Lesot MJ, Rifqi M (2010) Towards a conscious choice of a fuzzy similarity measure: a qualitative point of view. In: Hllermeier E, Kruse R, Hoffmann F (eds) Computational intelligence for knowledge-based system design: IPMU 2010 proceedings, vol 6178. Springer, LNAI, pp 1–10

  • Choi S-S, Cha S-H, Tappert CC (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8(1):43–48

    Google Scholar 

  • Coletti G, Bouchon-Meunier B (2018) A study of similarity measures through the paradigm of measurement theory: the fuzzy case. SoftComputing (submitted)

  • Coletti G, Di Bacco M (1989) Qualitative characterization of a dissimilarity and concentration index. Metron XLVII:121–130

    MathSciNet  MATH  Google Scholar 

  • Coletti G, Petturiti D, Vantaggi B (2017) Fuzzy weighted attribute combinations based similarity measures. In: Proceedings of ECSQARU 2017 (Symbolic and quantitative approaches to reasoning with uncertainty), vol 10369. LNCS, pp 364–374

  • Couso I, Garrido L, Sànchez L (2013) Similarity and dissimilarity measures between fuzzy sets: a formal relational study. Inf Sci 229:122–141

    Article  MathSciNet  MATH  Google Scholar 

  • Cross VV, Sudkamp TA (2002) Similarity and compatibility in fuzzy set theory: assessment and applications. Studies in fuzziness and soft computing, vol 93. Springer, Berlin

    Book  MATH  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecological association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Dvoraki J, Baume N, Botré Broséus J, Budgett R, Frey WO, Geyer H, Harcourt PR, Ho D, Howman D, Isola V, Lundby C, Marclay F, Peytavin A, Pipe A, Pitsiladis YP, Reichel C, Robinson N, Rodchenkov G, Saugy M, Sayegh S, Segura J, Thevis M, Vernec A, Viret M, Vouillamoz M, Zorzoli M (2014) Time for change: a roadmap to guide the implementation of the World Anti-Doping Code 2015. Br J Sports Med: BJSM 48:801–806

    Article  Google Scholar 

  • Filev P, Hadjiiski L, Sahiner B, Chan HP, Helvie MA (2005) Comparison of similarity measures for the task of template matching of masses on serial mammograms. Med Phys 32(2):515–529

    Article  Google Scholar 

  • Gilboa I, Schmeidler D (1995) Case-based decision theory. Q J Econ 110:605–639

    Article  MATH  Google Scholar 

  • Gilboa I, Schmeidler D (1997) Act similarity in case-based decision theory. Econ Theory 9:47–61

    Article  MathSciNet  MATH  Google Scholar 

  • Gilboa I, Lieberman O, Schmeidler D (2006) A similarity-based approach to prediction. Rev Econ Stat 162(1):124–131

    MathSciNet  MATH  Google Scholar 

  • Ha V, Haddawy P (2003) Similarity of personal preferences: theoretical foundations and empirical analysis. Artif Intell 146:149–173

    Article  MathSciNet  MATH  Google Scholar 

  • Hahn U, Ramscar M (eds) (2001) Similarity and categorization. Oxford University Press, Oxford

    Google Scholar 

  • Hwang CM, Yang MS, Hung WL, Lee MG (2012) A similarity measure of intuitionistic fuzzy sets based on the Sugeno integral with its application to pattern recognition. Inf Sci 189:93–109

    Article  MathSciNet  MATH  Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–270

    Google Scholar 

  • Krantz D, Luce R, Suppes P, Tversky A (1971) Foundations of measurement, vol I. Academic Press, New York

    MATH  Google Scholar 

  • Lesot MJ, Rifqi M (2010) Order-based equivalence degrees for similarity and distance measures. In: Hllermeier E, Kruse R, Hoffmann F (eds) Computational intelligence for knowledge-based systems design. IPMU 2010, vol 6178. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp 19–28

  • Lesot MJ, Rifqi M, Benhadda H (2009) Similarity measures for binary and numerical data: a survey. Int J Knowl Eng Soft Data Paradig (KESDP) 1:63–84

    Article  Google Scholar 

  • Li Y, Qin K, He X (2014) Some new approaches to constructing similarity measures. Fuzzy Sets Syst 234:46–60

    Article  MathSciNet  MATH  Google Scholar 

  • Narens L (1974) Minimal conditions for additive conjoint measurement and qualitative probability. J Math Psychol 11:404–430

    Article  MathSciNet  MATH  Google Scholar 

  • Ochiai A (1957) Zoogeographic studies on the soleoid fishes found in Japan and its neighbouring regions. Bull Jpn Soc Sci Fish 22:526–30

    Article  Google Scholar 

  • Pelillo M (ed) (2013) Similarity-based pattern analysis and recognition. Advances in computer vision and pattern recognition. Springer, London

    MATH  Google Scholar 

  • Penney GP, Weese J, Little JA, Desmedt P, Hill DLG, Hawkes DJ (1998) A comparison of similarity measures for use in 2-D-3-D medical image registration. In: Proceedings of MICCAI 1998: medical image computing and computer-assisted intervention MICCAI98, vol. 1496. LNCS, pp 1153–1161

  • Rissland E (2006) AI and similarity. IEEE Intell Syst 21:33–49

    Article  Google Scholar 

  • Rogers DJ, Tanimoto TT (1960) A computer program for classifying plants. Science 132:1115–1118

    Article  Google Scholar 

  • Sokal RR, Michener C (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Sokal RR, Sneath PHA (1963) Priciples of numerical taxonomy. W.H. Freeman, San Francisco

    Google Scholar 

  • Sorensen T (1948) A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. K Dan Vidensk Selsk Biol Skr 5:1–34

    Google Scholar 

  • Simmons S, Estes Z (2008) Individual differences in the perception of similarity and difference. Cognition 106(3):781–795

    Article  Google Scholar 

  • Suppes P, Krantz D, Luce R, Tversky A (1989) Foundations of measurement, vol II. Academic Press, New York

    MATH  Google Scholar 

  • Toussaint GT (2004) A comparison of rhythmic similarity measures. In: Proceedings 5th international conference on music information retrieval

  • Tversky A (1977) Features of similarity. Psychol Rev 84:327–352

    Article  Google Scholar 

  • WADA https://www.wada-ama.org/en/resources/the-code/world-anti-doping-code

  • Zhang Z, Huang K, Tan T (2006) Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: Proceedings of 18th international conference on pattern recognition (ICPR’06). IEEE. https://doi.org/10.1109/ICPR.2006.392

Download references

Funding

Giulianella Coletti work was partially supported by Perugia University, funding of 2016 Research Projects, under grant: “Decisions under risk, uncertainty and imprecision”, by the Italian Ministry of Health under Grant J521I14001640001 (“Intelligent systems helping in decisions for the early alert and the dissuasion to the use of doping”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulianella Coletti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by A. Di Nola.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Coletti is a member of INdAM research group GNAMPA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coletti, G., Bouchon-Meunier, B. A study of similarity measures through the paradigm of measurement theory: the classic case. Soft Comput 23, 6827–6845 (2019). https://doi.org/10.1007/s00500-018-03724-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-018-03724-3

Keywords

Navigation