Advertisement

Soft Computing

, Volume 22, Issue 10, pp 3141–3153 | Cite as

Fuzzy cerebellar model articulation controller network optimization via self-adaptive global best harmony search algorithm

  • Fei Chao
  • Dajun Zhou
  • Chih-Min Lin
  • Changle Zhou
  • Minghui Shi
  • Dazhen Lin
Focus
  • 164 Downloads

Abstract

Fuzzy cerebellar model articulation controller (FCMAC) networks with excellent nonlinear appropriation ability and simple implementation are used to solve complex uncertainties problems in engineering applications. Both online and off-line learning algorithm of FCMAC networks usually applies the gradient-descent-type methods. However, such gradient-descent methods lead to the high possibility to converging into local minima. To cope with the local minimum problem, this paper alternatively proposes to apply harmony search algorithm to find optimal network parameters, so as to achieve better performances of FCMAC. The harmony search algorithm optimizes not only FCMAC network’s weight variables, but also optimizes network receptive field’s center position and standard deviation parameters. In order to obtain an optimal network, the weight values, center positions, and standard deviations are transformed to three data strings that can be processed by harmony search algorithm. In particular, the self-adaptive global best harmony search algorithm (SGHS) is used to search optimal parameter combinations of FCMAC within solution domains. The network’s performances are verified by approximating six nonlinear formulae. In order to compare the performances of the FCMAC networks optimized by the SGHS algorithm, a back-propagation trained network and another harmony search variant optimized networks are also tested in this work. The experimental results show that the networks optimized by SGHS perform the faster convergence speed and better accuracy.

Keywords

Neural network optimization Fuzzy CMAC Self-adaptive global best harmony search algorithm 

Notes

Acknowledgements

The authors would like to thank the reviewers for their invaluable comments and suggestions, which greatly helped to improve the presentation of this paper. This work was supported by the Major State Basic Research Development Program of China (973 Program) (No. 2013CB329502), the Fundamental Research Funds for the Central Universities (No. 20720160126), the National Natural Science Foundation of China (Nos. 61673322 and 61673326), and Natural Science Foundation of Fujian Province of China (No. 2017J01128 and 2017J01129).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Chen CH, Chung C-C, Chao F, Lin CM, Rudas JJ (2015) Intelligent robust control for uncertain nonlinear multivariable systems using recurrent cerebellar model neural networks. Acta Polytech Hung 12(5):7–33Google Scholar
  2. Chiu CH (2010) Adaptive output recurrent cerebellar model articulation controller for nonlinear system control. Soft Comput 14(6):627–638CrossRefzbMATHGoogle Scholar
  3. Chiu CH, Peng YF, Lin YW (2011) Robust intelligent backstepping tracking control for wheeled inverted pendulum. Soft Comput 15(10):2029–2040CrossRefzbMATHGoogle Scholar
  4. Dai X, Yuan X, Wu L (2015) A novel harmony search algorithm with gaussian mutation for multi-objective optimization. Soft Comput. doi: 10.1007/s00500-015-1868-1 Google Scholar
  5. Diao R, Chao F, Peng T, Snooke N, Shen Q (2014) Feature selection inspired classifier ensemble reduction. IEEE Trans Cybern 44(8):1259–1268. doi: 10.1109/TCYB.2013.2281820 CrossRefGoogle Scholar
  6. Diao R, Shen Q (2012) Feature selection with harmony search. IEEE Trans Syst Man Cybern B (Cybern) 42(6):1509–1523. doi: 10.1109/TSMCB.2012.2193613 CrossRefGoogle Scholar
  7. Geem Z, Kim J, Loganathan G (2002) Harmony search optimization: application to pipe network design. Int J Model Simul 22(2):125–133. doi: 10.1080/02286203.2002.11442233 CrossRefGoogle Scholar
  8. Guo Z, Wang S, Yue X, Yang H (2015) Global harmony search with generalized opposition-based learning. Soft Comput. doi: 10.1007/s00500-015-1912-1 Google Scholar
  9. Kassim N, Sulaiman SI, Othman Z, Musirin I (2014) Harmony search-based optimization of artificial neural network for predicting ac power from a photovoltaic system. In: 2014 IEEE 8th international power engineering and optimization conference (PEOCO2014), pp 504–507. doi: 10.1109/PEOCO.2014.6814481
  10. Guo Z, Yang H, Wang S, Zhou C, Liu X (2016) Adaptive harmony search with best-based search strategy. Soft Comput. doi: 10.1007/s00500-016-2424-3 Google Scholar
  11. Huang H-X, Li J-C, Xiao C-L (2015) A proposed iteration optimization approach integrating backpropagation neural network with genetic algorithm. Exp Syst Appl 42(1):146–155Google Scholar
  12. Kattan A, Abdullah R, Salam RA (2010) Harmony search based supervised training of artificial neural networks. In: Proceedings of the 2010 international conference on intelligent systems, modelling and simulation, ISMS’10. IEEE Computer Society, Washington, DC, USA, pp 105–110. doi: 10.1109/ISMS.2010.31
  13. Keshtegar B, Oukati Sadeq M (2016) Gaussian global-best harmony search algorithm for optimization problems. Soft Comput. doi: 10.1007/s00500-016-2274-z Google Scholar
  14. Kulluk S, Ozbakir L, Baykasoglu A (2011) Self-adaptive global best harmony search algorithm for training neural networks. Procedia Comput Sci 3:282–286. doi: 10.1016/j.procs.2010.12.048.http://www.sciencedirect.com/science/article/pii/S1877050910004230
  15. Kulluk S, Ozbakir L, Baykasoglu A (2012) Training neural networks with harmony search algorithms for classification problems. Eng Appl Artif Intell 25(1):11–19. doi: 10.1016/j.engappai.2011.07.006. http://www.sciencedirect.com/science/article/pii/S0952197611001291
  16. Lee KS, Geem ZW, Ho Lee S, Woong Bae K (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37(7):663–684. doi: 10.1080/03052150500211895 MathSciNetCrossRefGoogle Scholar
  17. Lee ZJ, Wang YP, Su SF (2004) A genetic algorithm based robust learning credit assignment cerebellar model articulation controller. Appl Soft Comput 4(4):357–367. doi: 10.1016/j.asoc.2004.01.007. http://www.sciencedirect.com/science/article/pii/S1568494604000390
  18. Lin C, Hou Y, Chen T, Chen K (2014) Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks. IEEE Tras Fuzzy Syst 22(3):693–699. doi: 10.1109/TFUZZ.2013.2269149 CrossRefGoogle Scholar
  19. Lin C, Li H (2014) Intelligent control using the wavelet fuzzy CMAC backstepping control system for two-axis linear piezoelectric ceramic motor drive systems. IEEE Trans Fuzzy Syst 22(4):791–802. doi: 10.1109/TFUZZ.2013.2272648 MathSciNetCrossRefGoogle Scholar
  20. Lin CM, Hou YL, Chen TY, Chen KH (2014) Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks. IEEE Trans Fuzzy Syst 22(3):693–699. doi: 10.1109/TFUZZ.2013.2269149 CrossRefGoogle Scholar
  21. Lin CM, Li HY (2015) Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans Control Syst Technol 23(2):693–699. doi: 10.1109/TCST.2014.2325897 MathSciNetCrossRefGoogle Scholar
  22. Lin CM, Yang MS, Chao F, Hu XM, Zhang J (2016) Adaptive filter design using type-2 fuzzy cerebellar model articulation controller. IEEE Trans Neural Netw Learn Syst 27(10):2084–2094. doi: 10.1109/TNNLS.2015.2491305 MathSciNetCrossRefGoogle Scholar
  23. Lin HY, Wu CF, Lin CJ, Yu CY (2015) A fuzzy cerebellar model articulation controller using a strategy-adaptation-based bacterial foraging optimization algorithm for classification applications. Int J Fuzzy Syst 17(2):303–308CrossRefGoogle Scholar
  24. Lu Q, Tian J (2015) Research on walking gait of biped robot based on a modified cpg model. Math Probl Eng 2015:Art Id 793208Google Scholar
  25. Macnab CJB (2016) Creating a CMAC with overlapping basis functions in order to prevent weight drift. Soft Comput 21(16):1–8Google Scholar
  26. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188(2):1567–1579. doi: 10.1016/j.amc.2006.11.033. http://www.sciencedirect.com/science/article/pii/S0096300306015098
  27. Manjarres D, Landa-Torres I, Gil-Lopez S, Ser JD, Bilbao M, Salcedo-Sanz S, Geem Z (2013) A survey on applications of the harmony search algorithm. Eng Appl Artif Intell 26(8):1818–1831. doi: 10.1016/j.engappai.2013.05.008. http://www.sciencedirect.com/science/article/pii/S095219761300095X
  28. Mavrovouniotis M, Yang S (2015) Training neural networks with ant colony optimization algorithms for pattern classification. Soft Comput 19(6):1511–1522. doi: 10.1007/s00500-014-1334-5 CrossRefGoogle Scholar
  29. Mozaffari A, Scott KA, Chenouri S, Azad NL (2016) A modular ridge randomized neural network with differential evolutionary distributor applied to the estimation of sea ice thickness. Soft Comput. doi: 10.1007/s00500-016-2074-5 Google Scholar
  30. Naik B, Nayak J, Behera HS (2016) A global-best harmony search based gradient descent learning FLANN (GbHS-GDL-FLANN) for data classification. Egypt Inf J 17(1):57–87. doi: 10.1016/j.eij.2015.09.001. http://www.sciencedirect.com/science/article/pii/S1110866515000456
  31. Omran MG, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198(2):643–656. doi: 10.1016/j.amc.2007.09.004. http://www.sciencedirect.com/science/article/pii/S0096300307009320
  32. Pan QK, Suganthan P, Tasgetiren MF, Liang J (2010) A self-adaptive global best harmony search algorithm for continuous optimization problems. Appl Math Comput 216(3):830–848. doi: 10.1016/j.amc.2010.01.088. http://www.sciencedirect.com/science/article/pii/S0096300310001128
  33. Sun X, Kashima H, Matsuzaki T, Ueda N (2010) Averaged stochastic gradient descent with feedback: An accurate, robust, and fast training method. In: 2010 IEEE international conference on data mining, pp 1067–1072. doi: 10.1109/ICDM.2010.26
  34. Wang GG, Gandomi AH, Zhao X, Chu HCE (2016) Hybridizing harmony search algorithm with cuckoo search for global numerical optimization. Soft Comput 20(1):273–285. doi: 10.1007/s00500-014-1502-7 CrossRefGoogle Scholar
  35. Yao G, Chao F, Zeng H, Shi M, Jiang M, Zhou C (2014) Integrate classifier diversity evaluation to feature selection based classifier ensemble reduction. In: 2014 14th UK workshop on computational intelligence (UKCI), pp 1–7. doi: 10.1109/UKCI.2014.6930156
  36. Yao G, Zeng H, Chao F, Su C, Lin CM, Zhou C (2016) Integration of classifier diversity measures for feature selection-based classifier ensemble reduction. Soft Comput 20(8):2995–3005. doi: 10.1007/s00500-015-1927-7 CrossRefGoogle Scholar
  37. Zheng L, Diao R, Shen Q (2015) Self-adjusting harmony search-based feature selection. Soft Comput 19(6):1567–1579. doi: 10.1007/s00500-014-1307-8
  38. Zhou D, Chao F, Lin CM, Shi M, Zhou C (2017) Harmony search algorithm for fuzzy cerebellar model articulation controller networks optimization. Springer, Cham, pp 45–58Google Scholar
  39. Zhou D, Chao F, Zhu Z, Lin CM, Zhou C (2016) A novel approach to a mobile robot via multiple human body postures. In: 2016 12th world congress on intelligent control and automation (WCICA), pp 1463–1468. doi: 10.1109/WCICA.2016.7578290

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Cognitive Science Department, Fujian Key Laboratory of Brain-Inspired Computing Technique and Applications, School of InformaticsXiamen UniversityXiamenChina
  2. 2.Department of Electrical EngineeringYuan Ze UniversityChung-Li, TaoyuanTaiwan

Personalised recommendations