Skip to main content

Advertisement

Log in

An adaptive control study for the DC motor using meta-heuristic algorithms

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this work, a comparative study of different meta-heuristic techniques in the adaptive control for the speed regulation of the DC motor with parameters uncertainties is presented. The adaptive control is established as the online solution of a constrained dynamic optimization problem. Several adaptive strategies based on Differential Evolution, Particle Swarm Optimization, Bat Algorithm, Firefly Algorithm, Wolf Search Algorithm and Genetic Algorithm are proposed in order to online tune the parameters of the DC motor control. Simulation results show that proposed adaptive control strategies are a viable alternative to regulate the speed of the motor subject to different operation scenarios. The statistical analysis given in this work shows the features and the differences among strategies, their feasibility to set them up experimentally and also a new hybrid strategy to efficiently solve the problem. In addition, comparative analysis with a robust control approach reveal the advantages of the adaptive strategy based on meta-heuristic techniques in the velocity regulation of the DC motor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahn K, Truong D (2009) Online tuning fuzzy PID controller using robust extended kalman filter. J Process Control 19(6):1011–1023

    Article  Google Scholar 

  • Bitar Z, Sandouk A, Jabi SA (2015) Testing the performances of DC series motor used in electric car. Energy Procedia 74:148–159

    Article  Google Scholar 

  • Dasgupta D, McGregor D (1992) Non-stationary function optimization using the structured genetic algorithm. In: Proceedings of parallel problem solving from nature II, PPSN-2, pp 145–154

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(2–4):311–338

    Article  MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18

    Article  Google Scholar 

  • Fister D Jr, Fister I, Šafarič R (2016) Parameter tuning of PID controller with reactive nature-inspired algorithms. Robot Auton Syst 84:64–75

    Article  Google Scholar 

  • Hashem Zadeh SM, Khorashadizadeh S, Fateh MM, Hadadzarif M (2016) Optimal sliding mode control of a robot manipulator under uncertainty using PSO. Nonlinear Dyn 84(4):2227–2239

    Article  MathSciNet  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks, pp 1942–1948

  • Kim KH, Baik IC, Chung SK, Youn MJ (1997) Robust speed control of brushless DC motor using adaptive input-output linearisation technique. IEE Proc Electr Power Appl 144(6):469–475

    Article  Google Scholar 

  • Kwan C, Lewis F, Yeung K (1996) Adaptive control of induction motors without flux measurements. Automatica 32(6):903–908

    Article  MathSciNet  MATH  Google Scholar 

  • Landau I, Lozano R, M’Saad M (2011) Adaptive control: algorithms, analysis and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Le TD, Kang H, Suh Y, Ro Y (2013) An online self-gain tuning method using neural networks for nonlinear PD computed torque controller of a 2-dof parallel manipulator. Neurocomputing 116:53–61

    Article  Google Scholar 

  • Li Y, Tong S, Li T (2013) Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal Real World Appl 14(1):483–494

    Article  MathSciNet  MATH  Google Scholar 

  • Lin F, Shieh H, Shyu K, Huang P (2004) On-line gain-tuning IP controller using real-coded genetic algorithm. Electr Power Syst Res 72(2):157–169

    Article  Google Scholar 

  • Linares-Flores J, Barahona-Avalos JL, Sira-Ramirez H, Contreras-Ordaz MA (2012) Robust passivity-based control of a buck-boost-converter/DC-motor system: an active disturbance rejection approach. IEEE Trans Ind Appl 48(6):2362–2371

    Article  Google Scholar 

  • Liu K, Yao Y (2016) Robust control: theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  • López-Ibáñez M, Dubois-Lacoste J, Cáceres LP, Birattari M, Stützle T (2016) The irace package: iterated racing for automatic algorithm configuration. Oper Res Perspect 3:43–58

    Article  MathSciNet  Google Scholar 

  • Mao J, Tachikawa H, Shimokohbe A (2003) Precision positioning of a DC-motor-driven aerostatic slide system. Precis Eng 27(1):32–41

    Article  Google Scholar 

  • Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

    Article  Google Scholar 

  • Michalewicz Z (1995) Genetic algorithms, numerical optimization and constraints. In: Proceedings of the sixth international conference on genetic algorithms, pp 151–158

  • Michalewicz Z, Logan T, Swaminathan S (1994) Evolutionary operators for continuous convex parameter space. In: Proceedings of third annual conference on evolutionary programming, pp 84–97

  • Mishra P, Kumar V, Rana K (2015) An online tuned novel nonlinear PI controller for stiction compensation in pneumatic control valves. ISA Trans 58:434–445

    Article  Google Scholar 

  • Mori N, Kita H (2000) Genetic algorithms for adaptation to dynamic environments—a survey. In: Industrial electronics society, 2000. IECON 2000. 26th Annual conference of the IEEE, vol 4, pp 2947–2952

  • Orozco RG, Jimenez EI, Jimenez-Lizarraga M (2012) Comparative study of the speed robust control of a DC motor. In: World automation congress 2012, pp 1–6

  • Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization (Natural computing series). Springer, New York

    MATH  Google Scholar 

  • Raslavičius L, Keršys A, Makaras R (2017) Management of hybrid powertrain dynamics and energy consumption for 2WD, 4WD, and HMMWV vehicles. Renew Sustain Energy Rev 68(Part 1):380–396

    Article  Google Scholar 

  • Reeves CB (1993) Modern heuristic techniques for combinatorial problems, vol 1, 1st edn. Wiley, New York

  • Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: 1998 IEEE international conference on evolutionary computation proceedings. IEEE world congress on computational intelligence, pp 69–73

  • Sira-Ramirez H, Luviano-Juárez A, Cortés-Romero J (2011) Control lineal robusto de sistemas no lineales diferencialmente planos. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(1):14–28

    Google Scholar 

  • Sivanandam SN, Deepa SN (2007) Introduction to genetic algorithms, 1st edn. Springer, Berlin

    MATH  Google Scholar 

  • Slotine JE, Li W (1991) Applied nonlinear control, vol 1, 1st edn. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Song Q, Jia C (2016) Robust speed controller design for permanent magnet synchronous motor drives based on sliding mode control. Energy Procedia 88:867–873

    Article  Google Scholar 

  • Tang R, Fong S, Yang XS, Deb S (2012) Wolf search algorithm with ephemeral memory. In: 2012 Seventh international conference on digital information management (ICDIM), pp 165–172

  • Villarreal-Cervantes MG, Alvarez-Gallegos J (2016) Off-line PID control tuning for a planar parallel robot using DE variants. Exp Syst Appl 64:444–454

    Article  Google Scholar 

  • Xu X, Liu J, Li H, Jiang M (2016) Capacity-oriented passenger flow control under uncertain demand: algorithm development and real-world case study. Transp Res E Logist Transp Rev 87:130–148

    Article  Google Scholar 

  • Yang XS (2009) Firefly algorithms for multimodal optimization. Springer, Berlin

    Book  MATH  Google Scholar 

  • Yang XS (2010) A new metaheuristic bat-inspired algorithm. Springer, Berlin

  • Yang SF, Chou JH (2009) A mechatronic positioning system actuated using a micro DC-motor-driven propeller-thruster. Mechatronics 19(6):912–926

    Article  Google Scholar 

  • Yavuz H, Stallard TJ, McCabe AP, Aggidis GA (2012) Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves. Proc Inst Mech Eng A J Power Energy 226:98–111

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Secretaría de Investigación y Posgrado (SIP) under the Projects 20170783 and 20161030, and of the Consejo Nacional de Ciencia y Tecnología (CONACyT) under the Project 281728.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gabriel Villarreal-Cervantes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Molina, A., Villarreal-Cervantes, M.G. & Aldape-Pérez, M. An adaptive control study for the DC motor using meta-heuristic algorithms. Soft Comput 23, 889–906 (2019). https://doi.org/10.1007/s00500-017-2797-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2797-y

Keywords

Navigation