Advertisement

Soft Computing

, Volume 22, Issue 9, pp 2825–2841 | Cite as

EQ-algebras with internal states

  • Wei Wang
  • Xiao Long Xin
  • Jun Tao Wang
Foundations
  • 181 Downloads

Abstract

The main goal of this paper is to investigate EQ-algebras with internal states and state morphism good EQ-algebras. To begin with, we introduce the notion of EQ-algebras with internal states (simplify, SEQ-algebras) and discuss the relation between SEQ-algebras and state EQ-algebras. In the following, we study state filters (simplify, S-filters) and state prefilters (simplify, S-prefilters) of SEQ-algebras and discuss subdirectly irreducible SEQ-algebras. We focus on algebraic structures of the set SPF\((E,\sigma )\) of all S-prefilters on a SEQ-algebra and obtain that SPF\((E,\sigma )\) forms a complete Brouwerian lattice, when E is an \(\ell \)EQ-algebra or good. Moreover, for \(\ell \)EQ-algebras, SPF\((E,\sigma )\) forms a Heyting algebra if \(\sigma \) is faithful and preserves \(\rightarrow \). Then, we introduce the \(\sigma \)-co-annihilator of a non-empty set A on a SEQ-algebra. As applications, we give a characterization for minimal prime S-prefilters of state morphism good EQ-algebras and characterize the representable state morphism good EQ-algebras by minimal prime S-prefilters.

Keywords

SEQ-algebra S-prefilter S-filter \(\sigma \)-Co-annihilator Representable 

Notes

Acknowledgements

This research was supported by a grant of National Natural Science Foundation of China (11571281).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Borzooei RA, Saffar BG (2015) States on EQ-algebras. J Intell Fuzzy Syst 29(1):209–221MathSciNetCrossRefzbMATHGoogle Scholar
  2. Borzooei RA, Dvurečenskij A, Zahiri O (2014) State BCK-algebras and state-morphism BCK-algebras. Fuzzy Sets Syst 244:86–105MathSciNetCrossRefzbMATHGoogle Scholar
  3. Burris S, Sankappanavar HP (1981) A course in universal algebra. Springer, New YorkCrossRefzbMATHGoogle Scholar
  4. Ciungu LC (2008) Bosbach and Riečan states on residuated lattices. J Appl Funct Anal 2:175–188zbMATHGoogle Scholar
  5. Ciungu LC, Dvurečenskij A, Hyčko M (2011) State BL-algebras. Soft Comput 15:619–634CrossRefzbMATHGoogle Scholar
  6. Di Nola A, Dvurečenskij A (2009) State-morphism MV-algebras. Ann Pure Appl Log 161(2):161–173MathSciNetCrossRefzbMATHGoogle Scholar
  7. Di Nola A, Dvurečenskij A (2009) On some classes of state morphism MV-algebras. Math Slovaca 59(5):517–534MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dvurečenskij A (2001) States on pseudo MV-algebras. Stud Log 68(3):301–327MathSciNetCrossRefzbMATHGoogle Scholar
  9. Dvurečenskij A, Hyčko M (2005) On the existence of states for linear pseudo BL-algebra. Atti Semin Mat Fis Univ Modena Reggio Emilia 53:93–110MathSciNetzbMATHGoogle Scholar
  10. Dvurečenskij A, Kowalski T, Montagna F (2011) State morphism MV-algebras. Int J Approx Reason 52:1215–1228MathSciNetCrossRefzbMATHGoogle Scholar
  11. El-Zekey M (2010) Representable good EQ-algebras. Soft Comput 14:1011–1023CrossRefzbMATHGoogle Scholar
  12. El-Zekey M, Novák V, Mesiar R (2011) On good EQ-algebras. Fuzzy Sets Syst 178:1–23MathSciNetCrossRefzbMATHGoogle Scholar
  13. Flaminio T, Montagna F (2009) MV-algebras with internal states and probabilistic fuzzy logic. Int J Approx Reason 50(1):138–152MathSciNetCrossRefzbMATHGoogle Scholar
  14. Flaminio T, Montagna F (2007) An algebraic approach to states on MV-algebras. In: Štěpnička M, Novák V, Bodenhofer U (eds) Proceedings of the 5th EUSFLAT conference, Ostrava,Czech Republic, 11–14 Sept, vol 2, pp 201–206Google Scholar
  15. He PF, Xin XL, Yang YW (2015) On state residuated lattices. Soft Comput 19:2083–2094CrossRefzbMATHGoogle Scholar
  16. Kroupa T (2006) Every state on semisimple MV-algebra is integral. Fuzzy Sets Syst 157(20):2771–2782MathSciNetCrossRefzbMATHGoogle Scholar
  17. Liu LZ (2013) On the existence of states on MTL-algebras. Inf Sci 220:559–567MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mohtashamnia N, Torkzadeh L (2016) The lattice of prefilters of an EQ-algebra. Fuzzy Sets Syst. doi: 10.1016/j.fss.2016.04.015 zbMATHGoogle Scholar
  19. Mundici D (1995) Averaging the truth value in Łukasiewicz logic. Stud Log 55:113–127CrossRefzbMATHGoogle Scholar
  20. Novák V (2005a) On fuzzy type theory. Fuzzy Sets Syst 149(2):235–273MathSciNetCrossRefzbMATHGoogle Scholar
  21. Novák V (2005b) Fuzzy type theory as higher-order fuzzy logic. In: Proceedings of the 6th international conference on intelligent technologies, Bangkok, ThailandGoogle Scholar
  22. Novák V (2006) EQ-algebras: primary concepts and properties. In: Proceedings of the Czech–Japan seminar, ninth meeting, Kitakyushu and Nagasaki, 18–22 Aug, Graduate School of Information, Waseda University, pp 219–223Google Scholar
  23. Novák V, Baets BD (2009) EQ-algebras. Fuzzy Sets Syst 160:2956–2978MathSciNetCrossRefzbMATHGoogle Scholar
  24. Riečan B (2000) On the probability on BL-algebras. Acta Math Nitra 4:3–13Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of MathematicsNorthwest UniversityXi’anPeople’s Republic of China

Personalised recommendations