Skip to main content
Log in

Differential evolution with individual-dependent and dynamic parameter adjustment

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Differential evolution (DE) is a powerful and versatile evolutionary algorithm for global optimization over continuous search space, whose performance is significantly influenced by its mutation operator and control parameters (population size, scaling factor and crossover rate). In order to enhance the performance of DE, we adopt a new variant of classic mutation operator, a gradual decrease rule for population size, an individual-dependent and dynamic strategy to generate the required values of scaling factor and crossover rate during the evolutionary process, respectively. In the proposed variant of DE (denoted by IDDE), the adopted mutation operator merges the superiority of two classic mutation operators (DE/best/2 and DE/rand/2) together, and the adjustment mechanism of control parameters applies the fitness value information of each individual and dynamic fluctuation rule, which can provide a better balance between the exploration ability and exploitation ability. To verify the performance of proposed IDDE, a suite of thirty benchmark functions is applied to conduct the simulation experiment. The simulation results demonstrate that the proposed IDDE performs significantly better than five state-of-the-art DE variants and other two evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Biswas S, Kundu S, Das S (2015) Inducing niching behavior in differential evolution through local information sharing. IEEE Trans Evol Comput 19(2):246–263

    Article  Google Scholar 

  • Bose D, Biswas S, Vasilakos AW, Laha S (2014) Optimal filter design using an improved artificial bee colony algorithm. Inf Sci 281:443–461

    Article  MathSciNet  Google Scholar 

  • Brest J, Greiner S, Bošković B, Mernik M, Žumer V (2006) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657

    Article  Google Scholar 

  • Brown C, Jin Y, Leach M, Hodgson M (2016) \(\mu \)JADE: adaptive differential evolution with a small population. Soft Comput 20:4111–4120

    Article  Google Scholar 

  • Cai Y, Wang J (2013) Differential evolution with neighborhood and direction information for numerical optimization. IEEE Trans Cybern 43(6):2202–2215

    Article  Google Scholar 

  • Cai Y, Wang J (2015) Differential evolution with hybrid linkage crossover. Inf Sci 320:244–287

    Article  MathSciNet  Google Scholar 

  • Cai Y, Wang J, Chen Y, Wang T, Tian H, Luo W (2016) Differential evolution with neighborhood and direction information for numerical optimization. Soft Comput 20:465–494

    Article  Google Scholar 

  • Chen Y, Gao J, Yang G, Liu Y (2017) Solving equilibrium standby redundancy optimization problem by hybrid PSO algorithm. Comput Soft. doi:10.1007/s00500-017-2552-4

    Google Scholar 

  • Cuevas E, Zaldívar D, Pérez-Cisneros M, Oliva D (2013) Block-matching algorithm based on differential evolution for motion estimation. Eng Appl Artif Intell 26:488–498

    Article  Google Scholar 

  • Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–33

    MATH  Google Scholar 

  • Das S, Suganthan PN (2011a) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31

    Article  Google Scholar 

  • Das S, Suganthan PN (2011b) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Kolkata, India, and Nanyang Technological University, Singapore 2010

  • Das S, Konar A, Chakraborty UK, Abraham A (2009) Differential evolution using a neighborhood based mutation operator. IEEE Trans Evol Comput 13(3):526–553

    Article  Google Scholar 

  • Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  • Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comput Sci 344:243–278

    Article  MathSciNet  MATH  Google Scholar 

  • Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimisation. Appl Soft Comput 27:99–126

    Article  Google Scholar 

  • Fan Q, Yan X (2016) Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Trans Cybern 46(1):219–232

    Article  Google Scholar 

  • García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez A (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 185(3):1088–1113

    Article  MATH  Google Scholar 

  • Ghosh A, Das S, Chowdhury A, Giri R (2011) An improved differential evolution algorithm with fitness-based adaptation of the control parameters. Inf Sci 181(18):3749–3765

    Article  MathSciNet  Google Scholar 

  • Goldberg D (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, New York

    MATH  Google Scholar 

  • Gong WY, Cai ZH, Ling CX, Li H (2011a) Enhanced differential evolution with adaptive strategies for numerical optimization. IEEE Trans Syst Man Cybern B Cybern 41(2):397–413

    Article  Google Scholar 

  • Han MF, Liao SH, Chang JY, Lin CT (2013) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell 39(1):41–56

    Article  Google Scholar 

  • Herrera F, Lozano M (2000) Gradual distributed real-coded genetic algorithms. IEEE Trans Evol Comput 4(1):43–63

    Article  Google Scholar 

  • Idris I, Selamat A, Omatu S (2014) Hybrid email spam detection model with negative selection algorithm and differential evolution. Eng Appl Artif Intell 28:97–110

    Article  Google Scholar 

  • Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern B Cybern 42(2):482–500

    Article  Google Scholar 

  • Karafotias G, Hoogendoorn M, Eiben AE (2015) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput 19(2):167–187

    Article  Google Scholar 

  • Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufman, San Francisco

    Google Scholar 

  • Li XD, Yao X (2012) Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans Evol Comput 16(2):210–224

    Article  Google Scholar 

  • Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Zhengzhou University, China, and Nanyang Technological University, Singapore

  • Lin L, Gen M (2009) Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput 13(2):157–168

    Article  MATH  Google Scholar 

  • Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462

    Article  MATH  Google Scholar 

  • Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF (2011) Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl Soft Comput 11(2):1679–1696

    Article  Google Scholar 

  • Neri F, Tirronen V (2010) Recent advances in differential evolution: a survey and experimental analysis. Artif Intell Rev 33(1–2):61–106

    Article  Google Scholar 

  • Piotrowski AP (2017) Review of differential evolution population size. Swarm Evol Comput 32:1–24

    Article  Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417

    Article  Google Scholar 

  • Rao R, Savsani V, Vakharia D (2012) Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    Article  MathSciNet  Google Scholar 

  • Sarker R, Elsayed SM, Ray T (2014) Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans Evol Comput 18(5):689–707

    Article  Google Scholar 

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Sun G, Liu Y, Lan Y (2011) Fuzzy two-stage material procurement planning problem. J Intell Manuf 22:319–331

    Article  Google Scholar 

  • Sun G, Zhao R, Lan Y (2016) Joint operations algorithm for large-scale global optimization. Appl Soft Comput 38:1025–1039

    Article  Google Scholar 

  • Tang LX, Dong Y, Liu J (2015) Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput 19(4):560–574

    Article  Google Scholar 

  • Tang LX, Zhao Y, Liu JY (2014) An improved differential evolution algorithm for practical dynamic scheduling in steelmaking-continuous casting production. IEEE Trans Evol Comput 18(2):209–225

    Article  Google Scholar 

  • Tayarani-N M, Yao X, Xu H (2015) Meta-heuristic algorithms in car engine design: a literature survey. IEEE Trans Evol Comput 19(5):609–629

    Article  Google Scholar 

  • Wang S, Watada J (2012) A hybrid modified PSO approach to VaR-based facility location problems with variable capacity in fuzzy random uncertainty. Inf Sci 192(1):3–18

    Article  MATH  Google Scholar 

  • Wang Y, Cai Z, Zhang Q (2011) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66

    Article  Google Scholar 

  • Wang H, Rahnamayan S, Sun H, Omran MGH (2013) Gaussian bare-bones differential evolution. IEEE Trans Cybern 43(2):634–647

    Article  Google Scholar 

  • Wang J, Liao J, Zhou Y, Cai Y (2014) Differential evolution enhanced with multiobjective sorting based mutation operators. IEEE Trans Cybern 44(12):2792–2805

    Article  Google Scholar 

  • Yang M, Li C, Cai Z, Guan J (2015a) Differential evolution with auto-enhanced population diversity. IEEE Trans Cybern 45(2):302–315

    Article  Google Scholar 

  • Yang G, Liu Y, Yang K (2015b) Multi-objective biogeography-based optimization for supply chain network design under uncertainty. Comput Ind Eng 85:145–156

    Article  Google Scholar 

  • Yu W, Shen M, Chen W, Zhan Z, Gong Y, Lin Y, Liu O, Zhang J (2014) Differential evolution with two-level parameter adaptation. IEEE Trans Cybern 44(7):1080–1099

    Article  Google Scholar 

  • Zhai H, Liu Y, Yang K (2016) Modeling two-stage UHL problem with uncertain demands. Appl Math Model 40(4):3029–3048

    Article  MathSciNet  Google Scholar 

  • Zhang J, Sanderson AC (2009) JADE: Adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  • Zhang J, Avasarala V, Subbu R (2010) Evolutionary optimization of transition probability matrices for credit decision-making. Eur J Oper Res 200(2):557–567

    Article  MATH  Google Scholar 

  • Zhao J, Xu Y, Luo F, Dong Z, Peng Y (2014) Power system fault diagnosis based on history driven differential evolution and stochastic time domain simulation. Inf Sci 275:13–29

    Article  MathSciNet  Google Scholar 

  • Zhu W, Tang Y, Fang J, Zhang W (2013) Adaptive population tuning scheme for differential evolution. Inf Sci 223:164–191

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaoji Sun or Jin Peng.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Human participants or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Ni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Peng, J. & Zhao, R. Differential evolution with individual-dependent and dynamic parameter adjustment. Soft Comput 22, 5747–5773 (2018). https://doi.org/10.1007/s00500-017-2626-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2626-3

Keywords

Navigation