Advertisement

Soft Computing

, Volume 22, Issue 4, pp 1189–1201 | Cite as

Commutative deductive systems of pseudo-BCK-algebras

  • Lavinia Corina Ciungu
Foundations

Abstract

In this paper, we generalize the axiom systems given by M. Pałasiński and B. Woźniakowska for commutative BCK-algebras to the case of commutative pseudo-BCK-algebras. A characterization of commutative pseudo-BCK-algebras is also given. We define the commutative deductive systems of pseudo-BCK-algebras, and we generalize some results proved by Yisheng Huang for commutative ideals of BCI-algebras to the case of commutative deductive systems of pseudo-BCK-algebras. We prove that a pseudo-BCK-algebra A is commutative if and only if all the deductive systems of A are commutative. We show that a normal deductive system H of a pseudo-BCK-algebra A is commutative if and only if A / H is a commutative pseudo-BCK-algebra. We introduce the notions of state operators and state-morphism operators on pseudo-BCK-algebras, and we apply these results on commutative deductive systems to investigate the properties of these operators.

Keywords

Pseudo-BCK-algebra Commutative deductive system State operator State-morphism operator State pseudo-BCK-algebra 

Notes

Compliance with ethical standards

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. Borzooei RA, Borumand Saeid A, Rezaei A, Radfar A, Ameri R (2013) On pseudo BE-algebras. Discuss Math Gen Algebra Appl 33:95–108MathSciNetCrossRefzbMATHGoogle Scholar
  2. Borzooei RA, Dvurečenskij A, Zahiri O (2014) State BCK-algebras and state-morphism BCK-algebras. Fuzzy Sets Syst 244:86–105MathSciNetCrossRefzbMATHGoogle Scholar
  3. Ciungu LC (2013) Bounded pseudo-hoops with internal states. Math Slovaca 63:903–934MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ciungu LC (2014) Non-commutative multiple-valued logic algebras. Springer, New YorkCrossRefzbMATHGoogle Scholar
  5. Ciungu LC (2016) Commutative pseudo BE-algebras. Iran J Fuzzy Syst 13(1):131–144MathSciNetzbMATHGoogle Scholar
  6. Ciungu LC (2017) On state pseudo-hoops. Math Slovaca (to appear)Google Scholar
  7. Ciungu LC, Dvurečenskij A (2010) Measures, states and de Finetti maps on pseudo BCK-algebras. Fuzzy Sets Syst 160:1099–1113MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ciungu LC, Dvurečenskij A, Hyčko M (2011) State BL-algebras. Soft Comput 15:619–634CrossRefzbMATHGoogle Scholar
  9. Constantinescu NM (2012) On pseudo BL-algebras with internal states. Soft Comput 16:1915–1922CrossRefzbMATHGoogle Scholar
  10. Cornish WH (1982) A minimal equational base for commutative BCK-algebras. Math Semin Notes 10:251–256MathSciNetzbMATHGoogle Scholar
  11. Di Nola A, Dvurečenskij A (2009) State-morphism MV-algebras. Ann Pure Appl Log 161:161–173MathSciNetCrossRefzbMATHGoogle Scholar
  12. Di Nola A, Dvurečenskij A, Lettieri A (2010) Erratum to the paper: “State-morphism MV-algebras”[Ann. Pure Appl. Logic 161 (2009), 161–173]. Ann Pure Appl Logic 161:1605–1607Google Scholar
  13. Dudek W, Jun YB (2008) Pseudo BCI-algebras. East Asian Math J 24:187–190zbMATHGoogle Scholar
  14. Dvurečenskij A (2011) Subdirectly irreducible state-morphism BL-algebras. Arch Math Log 50:145–160MathSciNetCrossRefzbMATHGoogle Scholar
  15. Dvurečenskij A, Pulmannova S (2000) New trends in quantum structures. Kluwer Academic Publishers, DordrechtCrossRefzbMATHGoogle Scholar
  16. Dvurečenskij A, Rach\(\mathring{\text{u}}\)nek J, Šalounová D (2012a) Erratum to “State operators on generalizations of fuzzy structures” [Fuzzy Sets Syst. 187 (2012), 58–76]. Fuzzy Sets Syst 194:97–99Google Scholar
  17. Dvurečenskij A, Rach\(\mathring{\text{ u }}\)nek J, Šalounová D (2012b) State operators on generalizations of fuzzy structures. Fuzzy Sets Syst 187:58–76Google Scholar
  18. Flaminio T, Montagna F (2009) MV-algebras with internal states and probabilistic fuzzy logics. Int J Approx Reason 50:138–152MathSciNetCrossRefzbMATHGoogle Scholar
  19. Georgescu G, Iorgulescu A (2001) Pseudo BCK-algebras: An extension of BCK-algebras. In: Proceedings of DMTCS’01: combinatorics, computability and logic. Springer, London, pp. 97–114Google Scholar
  20. Georgescu G, Leuştean L, Preoteasa V (2005) Pseudo-hoops. J MultiVal Log Soft Comput 11:153–184MathSciNetzbMATHGoogle Scholar
  21. Huang YS (2006) BCI-algebra. Science Press, BeijingGoogle Scholar
  22. Imai Y, Isáki K (1966) On axiom systems of propositional calculi, XIV. Proc Jpn Acad 42:19–22MathSciNetCrossRefzbMATHGoogle Scholar
  23. Iorgulescu A (2008) Algebras of logic as BCK-algebras. ASE Editura, BucharestzbMATHGoogle Scholar
  24. Isèki K (1966) An algebra related with a propositional calculus. Proc Jpn Acad 42:26–29MathSciNetCrossRefzbMATHGoogle Scholar
  25. Kühr J (2007) Pseudo BCK-algebras and related structures, Habilitation thesis, Palacká University in OlomoucGoogle Scholar
  26. Kühr J (2009) Commutative pseudo BCK-algebras. Southeast Asian Bull Math 33:451–475MathSciNetzbMATHGoogle Scholar
  27. Lu YF, Zhang XH (2010) Commutative pseudo BCI-algebras and commutative pseudo BCI-filters. In: Proceedings of 2010 3rd international symposium on knowledge acquisition and modeling (KAM). Wuhan, China, pp 76–79Google Scholar
  28. Meng J (1993) An ideal characterization of commutative BCI-algebras. Pusan Kyongnam Math 1:1–6Google Scholar
  29. Meng J (1994) On ideals in BCK-algebras. Math Jpn 40:143–154MathSciNetzbMATHGoogle Scholar
  30. Meng J, Jun YB (1994) BCK-algebras. Kyung Moon Sa Co., SeoulzbMATHGoogle Scholar
  31. Mundici D (1995) Averaging the truth-value in Łukasiewicz sentential logic. Stud Log 55:113–127CrossRefzbMATHGoogle Scholar
  32. Pałasiński M, Woźniakowska B (1981) An equational basis for commutative BCK-algebras. Bull Sect Log 10:108–111MathSciNetzbMATHGoogle Scholar
  33. Rach\(\mathring{\text{ u }}\)nek J, Šalounová D, (2011) State operators on GMV-algebras. Soft Comput. 15:327–334Google Scholar
  34. Rezaei A, Saeid Borumand A (2012) Commutative ideals in BE-algebras. Kyungpook Math J 52:483–494MathSciNetCrossRefzbMATHGoogle Scholar
  35. Tanaka S (1975) A new class of algebras. Math Semin Notes 3:37–43MathSciNetGoogle Scholar
  36. Walendziak A (2011) On axiom systems of pseudo BCK-algebras. Bull Malays Math Sci Soc 34:287–293MathSciNetzbMATHGoogle Scholar
  37. Xie H, Huang YS (1998) \(n\)-fold commutative BCK-algebras. Sci Math 2:195–202MathSciNetzbMATHGoogle Scholar
  38. Yutani H (1977a) The class of commutative BCK-algebras is equationally definable. Math Semin Notes 5:207–210MathSciNetzbMATHGoogle Scholar
  39. Yutani H (1977b) On a system of axioms of a commutative BCK-algebra. Math Semin Notes 5:255–256MathSciNetzbMATHGoogle Scholar
  40. Zhang X (2014) Fuzzy commutative filters and fuzzy closed filters in pseudo BCI-algebras. J Comput Inf Syst 10:3577–3584Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of IowaIowa CityUSA

Personalised recommendations