Soft Computing

, Volume 21, Issue 10, pp 2549–2552 | Cite as

Note on classification of two-dimensional associative lattice-ordered real algebras



In this note, we correct three non-trivial classes of Birkhoff–Pierce’s classification of two-dimensional associative lattice-ordered real algebras.


Associative lattice-ordered real algebra Archimedean Non-Archimedean 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Birkhoff G (1967) Lattice theory, 3rd edn. American Mathematical Society Colloquium Publications, Vol XXV. American Mathematical Society, Providence, R.IGoogle Scholar
  2. Birkhoff G, Maclane S (1953) Survey of modern algebra, revised ednGoogle Scholar
  3. Birkhoff G, Pierce RS (1956) Lattice-ordered rings. Anais da Academia Brasileira de Ciências 28:41–69MathSciNetMATHGoogle Scholar
  4. DeMarr R, Steger A (1972) On elements with negative squares. Proc AMS 31:57–60Google Scholar
  5. Rump W, Yang Y (2014) Non-archimedean directed fields \(K(i)\) with o-subfield \(K\) and \(i^2 = -1\). J Algebra 400:1–7MathSciNetCrossRefMATHGoogle Scholar
  6. Schwartz N (1986) Lattice-ordered fields. Order 3:179–194MathSciNetCrossRefMATHGoogle Scholar
  7. Schwartz N, Yang Y (2011) Fields with directed partial orders. J Algebra 336:342–348MathSciNetCrossRefMATHGoogle Scholar
  8. Schwartz N, Yang Y. Archimedean partially ordered fields (Preprint) Google Scholar
  9. Sun Y, Yang Y (2013) Note on lattice-ordered rings with positive squares. Algebra Colloq 20(417):417–420MathSciNetCrossRefMATHGoogle Scholar
  10. Vaida D (2017) An extension of a Y. C. Yang theorem. Soft Comput. doi: 10.1007/s00500-017-2578-7
  11. Yang Y (2006a) On the existence of directed rings and algebras with negative squares. J Algebra 295:452–457Google Scholar
  12. Yang Y (2006b) A lattice-ordered skew field is totally ordered if squares are positive. Am Math Mon 113(3):265–266Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of MathematicsBeihang UniversityBeijingChina

Personalised recommendations