Soft Computing

, Volume 21, Issue 10, pp 2537–2547

Weak QMV algebras and some ring-like structures

  • Xian Lu
  • Yun Shang
  • Ru-qian Lu
  • Jian Zhang
  • Feifei Ma
Focus

DOI: 10.1007/s00500-017-2577-8

Cite this article as:
Lu, X., Shang, Y., Lu, R. et al. Soft Comput (2017) 21: 2537. doi:10.1007/s00500-017-2577-8
  • 37 Downloads

Abstract

In this work, we propose a new quantum structure—weak quantum MV algebras (wQMV algebras)—and define coupled bimonoids and strong coupled bimonoids. We find that the coupled bimonoids and strong coupled bimonoids are ring-like structures corresponding to lattice-ordered wQMV algebras and lattice-ordered QMV algebras, respectively. Using an automated reasoning tool, we give the smallest 4-element wQMV algebra but not a QMV algebra. We also show that lattice-ordered wQMV algebras are the real nondistributive generalization of MV algebras. Certainly, most important properties of quantum MV algebras (QMV algebras) are preserved by wQMV algebras. Furthermore, we can conclude that lattice-ordered wQMV algebras are the simplest unsharp quantum logical structures by far, based on which computation theory could be set up.

Keywords

Quantum logic QMV algebras Weak QMV algebras Semirings Bimonoid 

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Xian Lu
    • 1
  • Yun Shang
    • 2
    • 3
  • Ru-qian Lu
    • 2
    • 3
  • Jian Zhang
    • 1
    • 4
  • Feifei Ma
    • 1
    • 4
  1. 1.Institute of SoftwareCASBeijingPeople’s Republic of China
  2. 2.Institute of Mathematics, AMSSCASBeijingPeople’s Republic of China
  3. 3.NCMIS, AMSSCASBeijingPeople’s Republic of China
  4. 4.University of CAS, CASBeijingPeople’s Republic of China

Personalised recommendations