Soft Computing

, Volume 21, Issue 10, pp 2485–2502

The Cuntz semigroup and domain theory

Focus

Abstract

Domain theory has its origins in Mathematics and Theoretical Computer Science. Mathematically it combines order and topology. Its central concepts have their origin in the idea of approximating ideal objects by their relatively finite or, more generally, relatively compact parts. The development of domain theory in recent years was mainly motivated by questions in denotational semantics and the theory of computation. But since 2008, domain theoretical notions and methods are used in the theory of \(\hbox {C}^*\)-algebras in connection with the Cuntz semigroup. This paper is largely expository. It presents those notions of domain theory that seem to be relevant for the theory of Cuntz semigroups and have sometimes been developed independently in both communities. It also contains a new aspect in presenting results of Elliott, Ivanescu and Santiago on the cone of traces of a \(\hbox {C}^*\)-algebra as a particular case of the dual of a Cuntz semigroup.

References

  1. Abramsky S, Jung A (1995) Domain theory. In: Abramsky S et al (eds) Handbook of logic in computer science, vol 3. Clarendon Press, OxfordGoogle Scholar
  2. Alvarez-Manilla M, Jung A, Keimel K (2004) The probabilistic powerdomain for stably compact spaces. Theor Comput Sci 328(3):221–244MathSciNetCrossRefMATHGoogle Scholar
  3. Antoine R, Bosa J, Perera F (2011) Completions of monoids with applications to the Cuntz semigroup. Int J Math 22(6):837–861. arXiv:1003.2874
  4. Antoine R, Perera F, Thiel H (2014) Tensor products and regularity properties of Cuntz semigroups. arXiv:1410.0483v3
  5. Coward KT, Elliott GA, Ivanescu C (2008) The Cuntz semigroup as an invariant for \(\text{ C }^**\)-algebras. J Reine Angew Math 623:161–193MathSciNetMATHGoogle Scholar
  6. Cuntz J (1978) Dimension functions on simple \(\text{ C }^*\)-algebras. Math Ann 233:145–153MathSciNetCrossRefMATHGoogle Scholar
  7. Cuntz J, Pedersen GK (1979) Equivalence and traces on \(C^*\)-algebras. J Funct Anal 33:135–164MathSciNetCrossRefMATHGoogle Scholar
  8. Elliott GA, Robert L, Santiago L (2011) The cone of lower semicontinuous traces on a \(C^*\)-algebra. Am J Math 133:969–1005MathSciNetCrossRefMATHGoogle Scholar
  9. Erné M (1981) Scott convergence and Scott topology in partially ordered sets II. In: Banaschewski B, Hoffmann R-E (eds) Continuous Lattices, Proceedings, Bremen 1979. Lecture Notes on Mathematics, vol 871, pp 61–96. Springer, BerlinGoogle Scholar
  10. Erné M (1991) The ABC of order and topology. In: Herrlich H, Porst H-E (eds) Category theory at work. Heldermann Verlag, Berlin, pp 57–83Google Scholar
  11. Erné M (1999) Z-continuous posets and their topological manifestation. Appl Categ Struct 7:31–70MathSciNetCrossRefMATHGoogle Scholar
  12. Ershov YL (1973) The theory of A-spaces. Algebra i Logika 12: 369–416 (in Russian). Algebra and Logic (1975), 209–232 (English Translation)Google Scholar
  13. Ershov Y (1975) Theorie der Nummerierungen II. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 21:473–584MathSciNetCrossRefGoogle Scholar
  14. Ershov Y (1997) The bounded complete hull of an \(\alpha \)-space. Theor Comput Sci 175:3–13MathSciNetCrossRefMATHGoogle Scholar
  15. Ershov Y (1999) On d-spaces. Theor Comput Sci 224:59–72CrossRefMATHGoogle Scholar
  16. Gierz G, Hofmann KK, Keimel K, Lawson JD, Mislove M, Scott DS (2003) Continuous lattices and domains. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  17. Goubault-Larrecq J (2015) A short proof of the Schröder-Simpson theorem. Math Struct Comput Sci 25:1–5CrossRefMATHGoogle Scholar
  18. Hofmann KH, Stralka A (1976) The algebraic theory of compact Lawson semilattices. Application of Galois connections to compact semilattices. Dissertationes Matematicae (Rzprawy Matematyczne)CXXXVII, Warszawa , 54 pGoogle Scholar
  19. Keimel K (2008) Topological cones: functional analysis in a T\(_0\)-setting. Semigr Forum 77:108–142MathSciNetCrossRefGoogle Scholar
  20. Keimel K (2012) Locally convex cones and the Schröder-Simpson theorem. Quaestiones Mathematicae 35:353–390MathSciNetCrossRefMATHGoogle Scholar
  21. Keimel K (2015) Weakly compact spaces of homomorphisms in asymmetric topology. Topol Appl 185(186):1–22CrossRefGoogle Scholar
  22. Keimel K, Lawson JD (2009) D-completions and the d-topology. Ann Pure Appl Log 159:292–306MathSciNetCrossRefMATHGoogle Scholar
  23. Kirchberg E, Rørdam M (2002) Infinite non-simple \(C^*\)-algebras: Absorbing the Cuntz algebra \(\cal{O}_{\infty }\). Adv Math 167:195–264MathSciNetCrossRefMATHGoogle Scholar
  24. Nachbin L (1965) Topology and order. D. van Norstrand, vi+122 ppGoogle Scholar
  25. Plotkin GD (2006) A domain-theoretic Banach-Alaoglu theorem. Math Struct Comput Sci 16:299–311. doi:10.1017/S0960129506005172
  26. Robert L (2009) On the comparison of positive elements of a C*-algebra by lower semicontinuous traces. Indiana Univ Math J 58:2509–2515. (arXiv:0806.1570)
  27. Scott DS (1972) Continuous lattices. In: Lawvere FW (eds) Toposes, algebraic geometry and logic. Lecture notes in 274, pp 97–136. Springer, BerlinGoogle Scholar
  28. Smyth MB (1977) Effectively given domains. Theor Comput Sci 5:257–274MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Fachbereich Mathematik, Technische UniversitätDarmstadtGermany

Personalised recommendations