Skip to main content
Log in

Compositionality for quantitative specifications

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We provide a framework for compositional and iterative design and verification of systems with quantitative information, such as rewards, time or energy. It is based on disjunctive modal transition systems where we allow actions to bear various types of quantitative information. Throughout the design process, the actions can be further refined and the information made more precise. We show how to compute the results of standard operations on the systems, including the quotient (residual), which has not been previously considered for quantitative non-deterministic systems. Our quantitative framework has close connections to the modal nu-calculus and is compositional with respect to general notions of distances between systems and the standard operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aceto L, Ingólfsdóttir A, Larsen KG, Srba J (2007) Reactive systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Aceto L, Fábregas I, de Frutos-Escrig D, Ingólfsdóttir A, Palomino M (2013) On the specification of modal systems: a comparison of three frameworks. Sci Comput Program 78(12):2468–2487

    Article  Google Scholar 

  • Aliprantis CD, Border KC (2007) Infinite dimensional analysis: a hitchhiker’s guide. Springer, Berlin

    MATH  Google Scholar 

  • Bauer SS, Fahrenberg U, Juhl L, Larsen KG, Legay A, Thrane C (2011) Quantitative refinement for weighted modal transition systems. In: Murlak F, Sankowski P (eds) MFCS, volume 6907 of Lecture Notes Computer Science. Springer, Berlin, pp 60–71

    Google Scholar 

  • Bauer SS, David A, Hennicker R, Larsen KG, Legay A, Nyman U, Wąsowski A (2012a) Moving from specifications to contracts in component-based design. In: de Lara J, Zisman A (eds) FASE, volume 7212 of Lecture Notes in Computer Science. Springer, Berlin, pp 43–58

  • Bauer SS, Fahrenberg U, Legay A, Thrane C (2012b) General quantitative specification theories with modalities. In: Hirsch EA, Karhumäki J, Lepistö A, Prilutskii M (eds) CSR, volume 7353 of Lecture Notes in Computer Science. Springer, Berlin, pp 18–30

  • Bauer SS, Juhl L, Larsen KG, Legay A, Srba J (2012c) Extending modal transition systems with structured labels. Math Struct Comput Sci 22(4):581–617

  • Bauer SS, Fahrenberg U, Juhl L, Larsen KG, Legay A, Thrane C (2013) Weighted modal transition systems. Form Methods Syst Des 42(2):193–220

    Article  MATH  Google Scholar 

  • Ben-David S, Chechik M, Uchitel S (2013) Merging partial behaviour models with different vocabularies. In: D’Argenio PR, Melgratti HC (eds) CONCUR, volume 8052 of Lecture Notes in Computer Science. Springer, Berlin, pp 91–105

    Google Scholar 

  • Beneš N, Křetínský J, Larsen KG, Srba J (2009) On determinism in modal transition systems. Theor Comput Sci 410(41):4026–4043

    Article  MathSciNet  MATH  Google Scholar 

  • Beneš N, Černá I, Křetínský J (2011) Modal transition systems: composition and LTL model checking. In: Bultan T, Hsiung P-A (eds) ATVA, volume 6996 of Lecture Notes in Computer Science. Springer, Berlin, pp 228–242

    Google Scholar 

  • Beneš N, Delahaye B, Fahrenberg U, Křetínský J, Legay A (2013) Hennessy-Milner logic with greatest fixed points. In: D’Argenio PR, Melgratti HC (eds) CONCUR, volume 8052 of Lecture Notes in Computer Science. Springer, Berlin, pp 76–90

    Google Scholar 

  • Bertrand N, Legay A, Pinchinat S, Raclet J-B (2012) Modal event-clock specifications for timed component-based design. Sci Comput Program 77(12):1212–1234

    Article  MATH  Google Scholar 

  • Boudol G, Larsen KG (1992) Graphical versus logical specifications. Theor Comput Sci 106(1):3–20

    Article  MathSciNet  MATH  Google Scholar 

  • Caillaud B, Delahaye B, Larsen KG, Legay A, Pedersen ML, Wąsowski A (2011) Constraint markov chains. Theor Comput Sci 412(34):4373–4404

    Article  MathSciNet  MATH  Google Scholar 

  • Caires L, Cardelli L (2003) A spatial logic for concurrency (part I). Inf Comput 186(2):194–235

    Article  MATH  Google Scholar 

  • Cardelli L, Larsen KG, Mardare R (2011) Modular markovian logic. In: Aceto L, Henzinger M, Sgall J (eds) ICALP(2), volume 6756 of Lecture Notes in Computer Science. Springer, Berlin, pp 380–391

    Google Scholar 

  • Černý P, Henzinger TA, Radhakrishna A (2012) Simulation distances. Theor Comput Sci 413(1):21–35

    Article  MathSciNet  MATH  Google Scholar 

  • Continuity, modulus of. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Continuity,_modulus_of&oldid=30705

  • David A, Larsen KG, Legay A, Nyman U, Traonouez L-M, Wąsowski A (2015) Real-time specifications. Int J Softw Tools Technol Transf 17(1):17–45

    Article  Google Scholar 

  • de Alfaro L, Henzinger TA, Stoelinga M (2002) Timed interfaces. In: Sangiovanni-Vincentelli AL, Sifakis J (eds) EMSOFT, volume 2491 of Lecture Notes in Computer Science, vol 2491. Springer, Berlin, pp 108–122

    Google Scholar 

  • de Alfaro L (2003) Quantitative verification and control via the mu-calculus. In: Amadio RM, Lugiez D (eds) CONCUR, volume 2761 of Lecture Notes in Computer Science. Springer, Berlin, pp 102–126

    Google Scholar 

  • de Alfaro L, Faella M, Henzinger TA, Majumdar R, Stoelinga M (2005) Model checking discounted temporal properties. Theor Comput Sci 345(1):139–170

    Article  MathSciNet  MATH  Google Scholar 

  • de Alfaro L, Faella M, Stoelinga M (2009) Linear and branching system metrics. IEEE Trans Softw Eng 35(2):258–273

    Article  MATH  Google Scholar 

  • de Alfaro L, Henzinger TA (2001) Interface automata. In: ESEC/SIGSOFT FSE. ACM, pp 109–120

  • Delahaye B, Larsen KG, Legay A, Pedersen ML, Wąsowski A (2012) Consistency and refinement for interval Markov chains. J Log Algebr Program 81(3):209–226

  • Delahaye B, Fahrenberg U, Larsen KG, Legay A (2014) Refinement and difference for probabilistic automata. Log Methods Comput Sci 10(3). doi:10.2168/LMCS-10(3:11)2014

  • Desharnais J, Gupta V, Jagadeesan R, Panangaden P (2004) Metrics for labelled Markov processes. Theor Comput Sci 318(3):323–354

    Article  MathSciNet  MATH  Google Scholar 

  • Fahrenberg U, Acher M, Legay A, Wąsowski A (2014a) Sound merging and differencing for class diagrams. In: Gnesi S, Rensink A (eds) FASE, volume 8411 of Lecture Notes in Computer Science. Springer, Berlin, pp 63–78

  • Fahrenberg U, Legay A, Traonouez L-M (2014b) Structural refinement for the modal nu-calculus. In: Ciobanu G, Méry D (eds) ICTAC, volume 8687 of Lecture Notes in Computer Science. Springer, Berlin, pp 169–187

  • Fahrenberg U, Křetínský J, Legay A, Traonouez L-M (2014c) Compositionality for quantitative specifications. In: Lanese I, Madelaine E (eds) FACS, volume 8997 of Lecture Notes in Computer Science. Springer, Berlin, pp 306–324

  • Fahrenberg U, Legay A (2012) A robust specification theory for modal event-clock automata. In: Bauer SS, Raclet J-B (eds) FIT, volume 87 of EPTCS. pp 5–16

  • Fahrenberg U, Legay A (2013) Generalized quantitative analysis of metric transition systems. In: Shan C-C (ed) APLAS, voume 8301 of Lecture Notes in Computer Science. Springer, Berlin, pp 192–208

    Google Scholar 

  • Fahrenberg U, Legay A (2014a) General quantitative specification theories with modal transition systems. Acta Inform 51(5):261–295

  • Fahrenberg U, Legay A (2014b) The quantitative linear-time-branching-time spectrum. Theor Comput Sci 538:54–69

  • Fahrenberg U, Legay A, Thrane C (2011) The quantitative linear-time–branching-time spectrum. In: Chakraborty S, Kumar A (eds) FSTTCS, volume 13 of LIPIcs. pp 103–114

  • Feuillade G, Pinchinat S (2007) Modal specifications for the control theory of discrete event systems. Discrete Event Dyn Syst 17(2):211–232

    Article  MathSciNet  MATH  Google Scholar 

  • Girard J-Y (1987) Linear logic. Theor Comput Sci 50:1–102

    Article  MathSciNet  MATH  Google Scholar 

  • Hennessy M (1985) Acceptance trees. J ACM 32(4):896–928

    Article  MathSciNet  MATH  Google Scholar 

  • Henzinger TA, Majumdar R, Prabhu VS (2005) Quantifying similarities between timed systems. In: Pettersson P, Yi W (eds) FORMATS, volume 3829 of Lecture Notes in Computer Science. Springer, Berlin, pp 226–241

    Google Scholar 

  • Henzinger TA, Sifakis J (2006) The embedded systems design challenge. In: Misra J, Nipkow T, Sekerinski E (eds) FM, volume 4085 of Lecture Notes in Computer Science. Springer, Berlin, pp 1–15

    Google Scholar 

  • Huth M, Kwiatkowska MZ (1997) Quantitative analysis and model checking. In: LICS. IEEE Computer Society, pp 111–122

  • Jacobs B, Poll E (2001) A logic for the Java modeling language JML. In: Hußmann H (ed) FASE, volume 2029 of Lecturte Notes in Computer Science. Springer, Berlin, pp 284–299

    Google Scholar 

  • Jonsson B, Larsen KG (1991) Specification and refinement of probabilistic processes. In: LICS. IEEE Computer Society, pp 266–277

  • Klin B, Sassone V (2013) Structural operational semantics for stochastic and weighted transition systems. Inf Comput 227:58–83

    Article  MathSciNet  MATH  Google Scholar 

  • Kozen D (1983) Results on the propositional \(\mu \)-calculus. Theor Comput Sci 27:333–354

    Article  MathSciNet  MATH  Google Scholar 

  • Křetínský J, Sickert S (2013) MoTraS: a tool for modal transition systems and their extensions. In: Van Hung D, Ogawa M (eds) ATVA, volume 8172 of Lecture Notes in Computer Science. Springer, Berlin, pp 487–491

    Google Scholar 

  • Larsen KG, Thomsen B (1998) A modal process logic. In: LICS. IEEE Computer Society, pp 203–210

  • Larsen KG, Xinxin L (1990) Equation solving using modal transition systems. In: LICS. IEEE Computer Society, pp 108–117

  • Larsen KG (1990) Proof systems for satisfiability in Hennessy–Milner logic with recursion. Theor Comput Sci 72(2&3):265–288

    Article  MathSciNet  MATH  Google Scholar 

  • Larsen KG, Legay A, Traonouez L-M, Wąsowski A (2011) Robust specification of real time components. In: Fahrenberg U, Tripakis S (eds) FORMATS, volume 6919 of Lecture Notes in Computer Science. Springer, Berlin, pp 129–144

    Google Scholar 

  • Larsen KG, Mardare R, Panangaden P (2012) Taking it to the limit: approximate reasoning for Markov processes. In: Rovan B, Sassone V, Widmayer P (eds) MFCS, volume 7464 of Lecture Notes in Computer Science. Springer, Berlin, pp 681–692

    Google Scholar 

  • Larsen KG, Legay A, Traonouez L-M, Wąsowski A (2014) Robust synthesis for real-time systems. Theor Comput Sci 515:96–122

    Article  MathSciNet  MATH  Google Scholar 

  • Liskov B, Wing JM (1994) A behavioral notion of subtyping. ACM Trans Program Lang Syst 16(6):1811–1841

    Article  Google Scholar 

  • Mio M (2011) Probabilistic modal mu-calculus with independent product. In: Hofmann M (ed) FOSSACS, volume 6604 of Lecture Notes in Computer Science. Springer, Berlin, pp 290–304

    Google Scholar 

  • Morgan C, McIver A (1997) A probabilistic temporal calculus based on expectations. In: Groves L, Reeves S (eds) Formal methods. Springer, Singapore

  • Raclet J-B (2007) Residual for component specifications. In: Publication interne 1843. IRISA, Rennes

  • Romero-Hernández D, de Frutos-Escrig D (2012a) Defining distances for all process semantics. In: Giese H, Rosu G (eds) FMOODS/FORTE, volume 7273 of Lecture Notes in Computer Science. Springer, Berlin, pp 169–185

  • Romero-Hernández D, de Frutos-Escrig D (2012b) Distances between processes: a pure algebraic approach. In: Martí-Oliet N, Palomino M (eds) WADT, volume 7841 of Lecture Notes in Computer Science. Springer, Berlin, pp 265–282

  • Sifakis J (2011) A vision for computer science-the system perspective. Cent Eur J Comput Sci 1(1):108–116

    Google Scholar 

  • Traonouez L-M (2012) A parametric counterexample refinement approach for robust timed specifications. In Bauer SS, Raclet J-B (eds) FIT, volume 87 of EPTCS. pp 17–33

  • Uchitel S, Chechik M (2004) Merging partial behavioural models. In: Taylor RN, Dwyer MB (eds) SIGSOFT FSE. ACM, New York, pp 43–52

    Google Scholar 

  • van Breugel F, Worrell J (2005) A behavioural pseudometric for probabilistic transition systems. Theor Comput Sci 331(1):115–142

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The J. Křetínský acknowledges support by the European Research Council (ERC) under Grant 267989 (QUAREM), by the Austrian Science Fund (FWF) under Grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award), the Czech Science Foundation Grant No. P202/12/G061, and the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) REA Grant No. 291734. The U. Fahrenberg, A. Legay, L.-M. Traonouez acknowledge support by ANR MALTHY, Grant No. ANR-13-INSE-0003 from the French National Research Foundation, and by the EU FP7 SENSATION Project, Grant No. 318490 (FP7-ICT-2011-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uli Fahrenberg.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by M. Droste, Z. Esik and K. Larsen.

This paper is based on the conference contribution (Fahrenberg et al. 2014c), which has been presented at the 11th International Symposium on Formal Aspects of Component Software in Bertinoro, Italy.

Appendix: Proof of Theorem 7

Appendix: Proof of Theorem 7

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \textit{da}( \mathcal D_1), \textit{da}( \mathcal D_2))\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2):}\)

Let and be DMTS. There exists a DMTS refinement family \(R=\{ R_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\}\) such that for all \(s^0_1\in S^0_1\), there is \(s^0_2\in S^0_2\) with \(( s^0_1, s^0_2)\in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2)}\). We show that R is an NAA refinement family.

Let \(\alpha \in \mathbb {L}\) and \(( s_1, s_2)\in R_\alpha \). Let \(M_1\in \text {Tran} _1( s_1)\) and define

The condition

$$\begin{aligned}&\forall ( a_2, t_2)\in M_2: \exists ( a_1, t_1)\in M_1, \beta \in \mathbb {L}: \\&\quad ( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq \alpha \end{aligned}$$

is satisfied by construction. For the inverse condition, let \(( a_1, t_1)\in M_1\), then , and as R is a DMTS refinement family, this implies that there is and \(\beta \in \mathbb {L}\) for which \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), so that \(( a_2, t_2)\in M_2\) by construction.

We are left with showing that \(M_2\in \text {Tran} _2( s_2)\). First we notice that by construction, indeed for all \(( a_2, t_2)\in M_2\). Now let ; we need to show that \(N_2\cap M_2\ne \emptyset \).

We have such that \(\forall ( a_1, t_1)\in N_1: \exists ( a_2, t_2)\in N_2, \beta \in \mathbb {L}:( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). We know that \(N_1\cap M_1\ne \emptyset \), so let \(( a_1, t_1)\in N_1\cap M_1\). Then there is \(( a_2, t_2)\in N_2\) and \(\beta \in \mathbb {L}\) such that \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). But \(( a_2, t_2)\in N_2\) implies , hence \(( a_2, t_2)\in M_2\).

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2)\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \textit{da}( \mathcal D_1), \textit{da}( \mathcal D_2)):}\)

Let and be DMTS. There exists an NAA refinement family \(R=\{ R_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\}\) such that for all \(s^0_1\in S^0_1\), there is \(s^0_2\in S^0_2\) for which \(\left( s^0_1, s^0_2\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \textit{da}( \mathcal D_1), \textit{da}( \mathcal D_2))}\). We show that R is a DMTS refinement family. Let \(\alpha \in \mathbb {L}\) and \(( s_1, s_2)\in R_\alpha \).

Let , then we cannot have . Let , then \(M_1\in \text {Tran} _1( s_1)\) by construction. This implies that there is \(M_2\in \text {Tran} _2( s_2)\), \(( a_2, t_2)\in M_2\) and \(\beta \in \mathbb {L}\) such that \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also as was to be shown.

Let and assume, for the sake of contradiction, that there is no for which \(\forall ( a_1, t_1)\in N_1: \exists ( a_2, t_2)\in N_2, \beta \in \mathbb {L}:( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \) holds. Then for each , there is an element \(( a_{ N_1}, t_{ N_1})\in N_1\) such that \(\exists ( a_2, t_2)\in N_2, \beta \in \mathbb {L}:( t_{ N_1}, t_2)\in R_\beta , F( a_{ N_1}, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \) does not hold.

Let , then \(M_1\in \text {Tran} _1( s_1)\) by construction. Hence, we have \(M_2\in \text {Tran} _2( s_2)\) such that \(\forall ( a_2, t_2)\in M_2: \exists ( a_1, t_2)\in M_1, \beta \in \mathbb {L}:( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq \alpha \). Now \(N_2\cap M_2\ne \emptyset \), so let \(( a_2, t_2)\in N_2\cap M_2\), then there is \(( a_1, t_1)\in M_1\) and \(\beta \in \mathbb {L}\) such that \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), in contradiction to how \(M_1\) was constructed.

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2):}\)

Let \(\mathcal A_1=\left( S_1, S^0_1, \text {Tran} _1\right) \), \(\mathcal A_2=\left( S_2, S^0_2, \text {Tran} _2\right) \) be NAA, with DMTS translations , . There is an NAA refinement family \(R=\{ R_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\}\) such that for all \(s^0_1\in S^0_1\), there is \(s^0_2\in S^0_2\) with \(\left( s^0_1,s^0_2\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)}\).

Define a relation family \(R'=\left\{ R'_\alpha \subseteq D_1\times D_2\mid \alpha \in \mathbb {L}\right\} \) by

$$\begin{aligned} R'_\alpha&= \big \{ ( M_1, M_2)\mathrel {\big |}\exists ( s_1, s_2)\in R_\alpha : \\&\quad M_1\in \text {Tran} _1( s_1), M_2\in \text {Tran} ( s_2), \\&\quad \forall ( a_1, t_1)\in M_1: \exists ( a_2, t_2)\in M_2, \beta \in \mathbb {L}: \\&\qquad ( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha , \\&\quad \forall ( a_2, t_2)\in M_2: \exists ( a_1, t_1)\in M_1, \beta \in \mathbb {L}: \\&\qquad ( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \big \}. \end{aligned}$$

We show that \(R'\) is a witness for \(\smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)\). Let \(\alpha \in \mathbb {L}\) and \(( M_1, M_2)\in R'_\alpha \).

Let . By construction of , there is \(( a_2, t_2)\in M_2\) such that \(N_2=\left\{ \left( a_2, M_2'\right) \mid M_2'\in \text {Tran} _2( t_2)\right\} \). Then \(( M_1, M_2)\in R'_\alpha \) implies that there must be \(( a_1, t_1)\in M_1\) and \(\beta \in \mathbb {L}\) such that \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). Let \(N_1=\left\{ ( a_1, M_1')\mid M_1'\in \text {Tran} _1( t_1)\right\} \), then .

We show that \(\forall \left( a_1,M_1'\right) \in N_1: \exists \left( a_2,M_2'\right) \in N_2:\left( M_1', M_2'\right) \in R'_\beta \): Let \(\left( a_1, M_1'\right) \in N_1\), then \(M_1'\in \text {Tran} _1( t_1)\). From \(( t_1, t_2)\in R_\beta \) we get \(M_2'\in \text {Tran} _2( t_2)\) such that

$$\begin{aligned} \forall ( b_1, u_1)&\in M_1': \exists ( b_2, u_2)\in M_2', \gamma \in \mathbb {L}:( u_1, u_2)\\&\in R_\gamma , F( b_1, b_2, \gamma )\sqsubseteq _\mathbb {L}\beta , \\&\forall ( b_2, u_2)\in M_2': \exists ( b_1, u_1)\in M_1', \gamma \in \mathbb {L}:( u_1, u_2)\\&\in R_\gamma , F( b_1, b_2, \gamma )\sqsubseteq _\mathbb {L}\beta , \end{aligned}$$

hence \(\left( M_1', M_2'\right) \in R'_\beta \); also, \(\left( a_2, M_2'\right) \in N_2\) by construction of \(N_2\).

Let , then we have for which \(\left( a_1, M_1'\right) \in N_1\) by construction of . This in turn implies that there must be \(( a_1, t_1)\in M_1\) such that \(N_1=\left\{ \left( a_1, M_1''\right) \mid M_1''\in \text {Tran} _1( t_1)\right\} \). By \(( M_1, M_2)\in R'_\alpha \), we get \(( a_2, t_2)\in M_2\) and \(\beta \in \mathbb {L}\) such that \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). Let \(N_2=\{( a_2, M_2')\mid M_2'\in \text {Tran} _2( t_2)\}\), then and hence for all \(( a_2, M_2')\in N_2\). By the same arguments as above, there is \(( a_2, M_2')\in N_2\) for which \(( M_1', M_2')\in R'_\beta \).

We miss to show that \(R'\) is initialized. Let \(M_1^0\in D_1^0\), then we have \(s_1^0\in S_1^0\) with \(M_1^0\in \text {Tran} _1( s_1^0)\). As R is initialized, this entails that there is \(s_2^0\in S_2^0\) with \(( s_1^0, s_2^0)\in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)}\), which gives us \(M_2^0\in \text {Tran} _2( s_2^0)\) which satisfies the conditions in the definition of \(R'_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)}\), whence \(( M_1^0, M_2^0)\in R'_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)}\).

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2)):}\)

Let \(\mathcal A_1=\left( S_1, S^0_1, \text {Tran} _1\right) \), \(\mathcal A_2=\left( S_2, S^0_2, \text {Tran} _2\right) \) be NAA, with DMTS translations , . There is a DMTS refinement family \(R=\{ R_\alpha \subseteq D_1\times D_2\mid \alpha \in \mathbb {L}\}\) such that for all \(M_1^0\in D_1^0\), there exists \(M_2^0\in D_2^0\) with \(\left( M_1^0, M_2^0\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))}\).

Define a relation family \(R'=\{ R'_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\}\) by

$$\begin{aligned} R'_\alpha= & {} \big \{ ( s_1, s_2)\mathrel {\big |}\forall M_1\in \text {Tran} _1( s_1): \\&\exists M_2\in \text {Tran} _2( s_2):( M_1, M_2)\in R_\alpha \big \}; \end{aligned}$$

we will show that \(R'\) is a witness for \(\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal A_1, \mathcal A_2)\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))\).

Let \(\alpha \in \mathbb {L}\), \(( s_1, s_2)\in R'_\alpha \) and \(M_1\in \text {Tran} _1( s_1)\), then by construction of \(R'\), we have \(M_2\in \text {Tran} _2( s_2)\) with \(( M_1, M_2)\in R_\alpha \).

Let \(( a_2, t_2)\in M_2\) and define \(N_2=\{( a_2, M_2')\mid M_2'\in \text {Tran} _2( t_2)\}\), then . Now \(( M_1, M_2)\in R_\alpha \) implies that there must be satisfying \(\forall ( a_1, M_1')\in N_1: \exists ( a_2, M_2')\in N_2, \beta \in \mathbb {L}:( M_1', M_2')\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). We have \(( a_1, t_1)\in M_1\) such that \(N_1=\{( a_1, M_1')\mid M_1'\in \text {Tran} _1( t_1)\}\); we only miss to show that \(( t_1, t_2)\in R'_\beta \) for some \(\beta \in \mathbb {L}\) for which \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). Let \(M_1'\in \text {Tran} _1( t_1)\), then \(( a_1, M_1')\in N_1\); hence, there is \(( a_2, M_2')\in N_2\) and \(\beta \in \mathbb {L}\) such that \(( M_1', M_2')\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq \alpha \), but \(( a_2, M_2')\in N_2\) also entails \(M_2'\in \text {Tran} _2( t_2)\).

Let \(( a_1, t_1)\in M_1\) and define \(N_1=\{( a_1, M_1')\mid M_1'\in \text {Tran} _1( t_1)\}\), then . Now let \(( a_1, M_1')\in N_1\), then ; hence, we have and \(\beta \in \mathbb {L}\) such that \(( M_1', M_2')\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \). By construction of , this implies that there is with \(( a_2, M_2')\in N_2\), and we have \(( a_2, t_2)\in M_2\) for which \(N_2=\{( a_2, M_2'')\mid M_2''\in \text {Tran} _2( t_2)\}\). Now if \(M_1''\in \text {Tran} _1( t_1)\), then \(( a_1, M_1'')\in N_1\); hence, there is \(( a_2, M_2'')\in N_2\) with \(( M_1'', M_2'')\in R_\beta \), but \(( a, M_2'')\in N_2\) also gives \(M_2''\in \text {Tran} _2( t_2)\).

We miss to show that \(R'\) is initialized. Let \(s^0_1\in S^0_1\) and \(M^0_1\in \text {Tran} _1( s^0_1)\). As R is initialized, this gets us \(M^0_2\in D_2\) with \(( M^0_1, M^0_2)\in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))}\), but \(M^0_2\in \text {Tran} _2( s^0_2)\) for some \(s^0_2\in S^0_2\), and then \(( s^0_1, s^0_2)\in R'_{ \smash {d_\textsf {m} ^\mathbb {L}}( \textit{ad}( \mathcal A_1), \textit{ad}( \mathcal A_2))}\).

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \textit{dn}( \mathcal D_1), \textit{dn}( \mathcal D_2))\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2):}\)

Let and be DMTS, with \(\nu \)-calculus translations \(\textit{dn}( \mathcal D_1)=\left( S_1, S_1^0, \varDelta _1\right) \) and \(\textit{dn}( \mathcal D_2)=( S_2, S_2^0, \varDelta _2)\). There is a DMTS refinement family \(R=\{ R_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\}\) such that for all \(s_1^0\in S_1^0\), there exists \(s_2^0\in S_2^0\) for which \(( s_1^0, s_2^0)\in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2)}\).

Let \(\alpha \in \mathbb {L}\), \(( s_1, s_2)\in R_\alpha \), \(a_1\in \varSigma \), and \(t_1\in \Box ^{ a_1}_1( s_1)\). Then ; hence, we have and \(\beta \in \mathbb {L}\) with \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also \(t_2\in \Box ^{ a_2}_2( s_2)\).

Let \(N_2\in \Diamond _2( s_2)\), then also , so that there must be such that \(\forall ( a_1, t_1)\in N_1: \exists ( a_2, t_2)\in N_2, \beta \in \mathbb {L}:( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also \(N_1\in \Diamond _1( s_1)\).

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2)\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \textit{dn}( \mathcal D_1), \textit{dn}( \mathcal D_2)):}\)

Let and be DMTS, with \(\nu \)-calculus translations

\(\textit{dn}( \mathcal D_1)=\left( S_1, S_1^0, \varDelta _1\right) \) and \(\textit{dn}( \mathcal D_2)=\left( S_2, S_2^0, \varDelta _2\right) \). There is a \(\nu \)-calculus refinement family \(R=\left\{ R_\alpha \subseteq S_1\times S_2\mid \alpha \in \mathbb {L}\right\} \) such that for all \(s_1^0\in S_1^0\), there exists \(s_2^0\in S_2^0\) for which \(\left( s_1^0, s_2^0\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal D_1, \mathcal D_2)}\).

Let \(\alpha \in \mathbb {L}\) and \(( s_1, s_2)\in R_\alpha \) and assume that . Then \(t_1\in \Box ^{ a_1}_1( s_1)\), so that there is \(a_2\in \varSigma \), \(t_2\in \Box ^{ a_2}_2( s_2)\) and \(\beta \in \mathbb {L}\) for which \(( t_1, t_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also .

Assume that , then \(N_2\in \Diamond _2( s_2)\). Hence, there is \(N_1\in \Diamond _1( s_1)\) so that \(\forall ( a_1, t_1)\in N_1: \exists ( a_2, t_2)\in N_2, \beta \in \mathbb {L}:( t_1, t_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also .

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \textit{nd}( \mathcal N_1), \textit{nd}( \mathcal N_2))\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal N_1, \mathcal N_2):}\)

Let \(\mathcal N_1=\left( X_1, X_1^0, \varDelta _1\right) \), \(\mathcal N_2=\left( X_2, X_2^0, \varDelta _2\right) \) be \(\nu \)-calculus expressions in normal form, with DMTS translations and . There is a \(\nu \)-calculus refinement family \(R=\{ R_\alpha \subseteq X_1\times X_2\mid \alpha \in \mathbb {L}\}\) such that for all \(x_1^0\in X_1^0\), there is \(x_2^0\in X_2^0\) for which \(\left( x_1^0, x_2^0\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal N_1, \mathcal N_2)}\).

Let \(\alpha \in \mathbb {L}\) and \(( x_1, x_2)\in R_\alpha \) and assume that . Then \(y_1\in \Box _1^{ a_1}( x_1)\); hence, there are \(a_2\in \varSigma \), \(y_2\in \Box _2^{ a_2}\) and \(\beta \in \mathbb {L}\) such that \(( y_1, y_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also .

Assume that , then \(N_2\in \Diamond _2( x_2)\). Hence, there must be \(N_1\in \Diamond _1( x_1)\) such that \(\forall ( a_1, y_1)\in N_1: \exists ( a_2, y_2)\in N_2, \beta \in \mathbb {L}:( y_1, y_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also .

\(\underline{\smash {d_\textsf {m} ^\mathbb {L}}( \mathcal N_1, \mathcal N_2)\sqsubseteq _\mathbb {L}\smash {d_\textsf {m} ^\mathbb {L}}( \textit{nd}( \mathcal N_1), \textit{nd}( \mathcal N_2)):}\)

Let \(\mathcal N_1=\left( X_1, X_1^0, \varDelta _1\right) \), \(\mathcal N_2=\left( X_2, X_2^0, \varDelta _2\right) \) be \(\nu \)-calculus expressions in normal form, with DMTS translations and . There is a DMTS refinement family \(R=\{ R_\alpha \subseteq X_1\times X_2\mid \alpha \in \mathbb {L}\}\) such that for all \(x_1^0\in X_1^0\), there is \(x_2^0\in X_2^0\) for which \(\left( x_1^0, x_2^0\right) \in R_{ \smash {d_\textsf {m} ^\mathbb {L}}( \mathcal N_1, \mathcal N_2)}\).

Let \(\alpha \in \mathbb {L}\), \(( x_1, x_2)\in R_\alpha \), \(a_1\in \varSigma \), and \(y_1\in \Box ^{ a_1}_1( x_1)\). Then ; hence, we have and \(\beta \in \mathbb {L}\) so that \(( y_1, y_2)\in R_\beta \) and \(F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also \(y_1\in \Box ^{ a_2}_2( x_2)\).

Let \(N_2\in \Diamond _2( x_2)\), then also . Hence, we must have with \(\forall ( a_1, y_1)\in N_1: \exists ( a_2, y_2)\in N_2, \beta \in \mathbb {L}:( y_1, y_2)\in R_\beta , F( a_1, a_2, \beta )\sqsubseteq _\mathbb {L}\alpha \), but then also \(N_1\in \Diamond _1( x_1)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahrenberg, U., Křetínský, J., Legay, A. et al. Compositionality for quantitative specifications. Soft Comput 22, 1139–1158 (2018). https://doi.org/10.1007/s00500-017-2519-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2519-5

Keywords

Navigation