Extrapolated quantum states, void states and a huge novel class of distillable entangled states

Abstract

A nice and interesting property of any pure tensor product state is that each such state has distillable entangled states at an arbitrarily small distance \(\epsilon \) in its neighborhood. We say that such nearby states are \(\epsilon \)-entangled, and we call the tensor product state in that case, a “boundary separable state,” as there is entanglement at any distance from this “boundary.” Here we find a huge class of separable states that also share the property mentioned above—they all have \(\epsilon \)-entangled states at any small distance in their neighborhood. Furthermore, the entanglement they have is proved to be distillable. We then extend this result to the discordant/classical cut and show that all classical states (correlated and uncorrelated) have discordant states at distance \(\epsilon \), and provide a constructive method for finding \(\epsilon \)-discordant states.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Notes

  1. 1.

    A preliminary version of this work (without discordant states) appeared in TPNC-2014 (Boyer and Mor 2014).

  2. 2.

    The term product basis should not be confused with the classical basis of Groisman et al. (2007) which is a product of local bases, rather than a basis of product states.

  3. 3.

    Note that a separable \(N-1\)-void state is a tensor product state.

  4. 4.

    The term classical is used in a variety of ways in the literature; here, we use it in the sense of correlations as in Modi et al. (2012).

  5. 5.

    Although the Peres criterion is well known, it is provided for completeness of the exposition in Appendix 8.

References

  1. Acín A, Augusiak R, Cavalcanti D, Hadley C, Korbicz JK, Lewenstein M, Masanes L, Piani M (2010) Unified framework for correlations in terms of local quantum observables. Phys Rev Lett 104(140):404. doi:10.1103/PhysRevLett.104.140404

    Google Scholar 

  2. Bengtsson I, Życzkowski K (2006) Geometry of quantum states: an introduction to quantum entanglement. Cambridge University Press, Cambridge

    Google Scholar 

  3. Bennett CH, DiVincenzo DP, Fuchs CA, Mor T, Rains E, Shor PW, Smolin JA, Wootters WK (1999a) Quantum nonlocality without entanglement. Phys Rev A 59:1070–1091. doi:10.1103/PhysRevA.59.1070

    MathSciNet  Article  Google Scholar 

  4. Bennett CH, DiVincenzo DP, Mor T, Shor PW, Smolin JA, Terhal BM (1999b) Unextendible product bases and bound entanglement. Phys Rev Lett 82:5385–5388. doi:10.1103/PhysRevLett.82.5385

    MathSciNet  Article  MATH  Google Scholar 

  5. Boyer M, Brodutch A, Mor T (2017) Entanglement and deterministic quantum computing with one qubit. Phys Rev A (2017, to appear). arXiv:1606.05283

  6. Boyer M, Mor T (2014) Extrapolated states, void states, and a huge novel class of distillable entangled states. In: Dediu AH, Lozano M, Martín-Vide C (eds) Theory and practice of natural computing. Lecture notes in computer science, vol 8890. Springer, Berlin, pp 107–118. doi:10.1007/978-3-319-13749-0_10

    Google Scholar 

  7. Braunstein SL, Caves CM, Jozsa R, Linden N, Popescu S, Schack R (1999) Separability of very noisy mixed states and implications for nmr quantum computing. Phys Rev Lett 83:1054–1057. doi:10.1103/PhysRevLett.83.1054

    Article  Google Scholar 

  8. Brodutch A (2013) Discord and quantum computational resources. Phys Rev A 88(022):307. doi:10.1103/PhysRevA.88.022307

    Google Scholar 

  9. Brodutch A, Terno DR (2010) Quantum discord, local operations, and Maxwell’s demons. Phys Rev A 81(062):103. doi:10.1103/PhysRevA.81.062103

    MathSciNet  Google Scholar 

  10. Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S (2014) Bell nonlocality. Rev Mod Phys 86:419–478. doi:10.1103/RevModPhys.86.419

    Article  Google Scholar 

  11. Cable H, Browne D (2015) Exact and efficient simulation of concordant computation N. N J Phys 17:113049. doi:10.1088/1367-2630/17/11/113049

    Article  Google Scholar 

  12. Chen L, Djokovic DZ (2011) Distillability and PPT entanglement of low-rank quantum states. J Phys A: Math Theor 44:285303. doi:10.1088/1751-8113/44/28/285303

  13. Chen J, Duan R, Ji Z, Ying M, Yu J (2008) Existence of universal entangler. J Math Phys 49(1):012103. doi:10.1063/1.2829895

    MathSciNet  Article  MATH  Google Scholar 

  14. Datta A, Shaji A (2011) Quantum discord and quantum computing—an appraisal. Int J Quantum Inf 9:1787. doi:10.1142/S0219749911008416

    MathSciNet  Article  MATH  Google Scholar 

  15. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62(062):314. doi:10.1103/PhysRevA.62.062314

    MathSciNet  Google Scholar 

  16. Ferraro A, Aolita L, Cavalcanti D, Cucchietti FM, Acín A (2010) Almost all quantum states have nonclassical correlations. Phys Rev A 81(052):318. doi:10.1103/PhysRevA.81.052318

    Google Scholar 

  17. Groisman B, Kenigsberg D, Mor T (2007) “Quantumness” versus “classicality” of quantum states. arXiv:quant-ph/0703103

  18. Gühne O, Lütkenhaus N (2007) Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states. J Phys Conf Ser 67(1):012004. doi:10.1088/1742-6596/67/1/012004

    Article  Google Scholar 

  19. Gurvits L (2003) Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing, ACM, New York, NY, USA, STOC ’03, pp 10–19. doi:10.1145/780542.780545

  20. Gurvits L, Barnum H (2002) Largest separable balls around the maximally mixed bipartite quantum state. Phys Rev A 66:06231. doi:10.1103/PhysRevA.66.062311

    Article  Google Scholar 

  21. Henderson L, Vedral V (2001) Classical, quantum and total correlations. J Phys A Math Gen 34(35):6899. doi:10.1088/0305-4470/34/35/315

  22. Horodecki P (1997) Separability criterion and inseparable mixed states with positive partial transposition. Phys Lett A 232(5):333–339. doi:10.1016/S0375-9601(97)00416-7

    MathSciNet  Article  MATH  Google Scholar 

  23. Horodecki M, Horodecki P, Horodecki R (1997) Inseparable two spin-\(\frac{1}{2}\) density matrices can be distilled to a singlet form. Phys Rev Lett 78:574–577. doi:10.1103/PhysRevLett.78.574

    Article  MATH  Google Scholar 

  24. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865–942. doi:10.1103/RevModPhys.81.865

    MathSciNet  Article  MATH  Google Scholar 

  25. Kraus B, Lewenstein M, Cirac JI (2002) Characterization of distillable and activatable states using entanglement witnesses. Phys Rev A 65(042):327. doi:10.1103/PhysRevA.65.042327

    Google Scholar 

  26. Modi K, Paterek T, Son W, Vedral V, Williamson M (2010) Unified view of quantum and classical correlations. Phys Rev Lett 104(080):501. doi:10.1103/PhysRevLett.104.080501

    MathSciNet  Google Scholar 

  27. Modi K, Brodutch A, Cable H, Paterek T, Vedral V (2012) The classical-quantum boundary for correlations: discord and related measures. Rev Mod Phys 84:1655–1707. doi:10.1103/RevModPhys.84.1655

    Article  Google Scholar 

  28. Ollivier H, Zurek WH (2001) Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett 88(017):901. doi:10.1103/PhysRevLett.88.017901

    MATH  Google Scholar 

  29. Peres A (1996) Separability criterion for density matrices. Phys Rev Lett 77:1413–1415. doi:10.1103/PhysRevLett.77.1413

    MathSciNet  Article  MATH  Google Scholar 

  30. Vidal G, Tarrach R (1999) Robustness of entanglement. Phys Rev A 59:141–155. doi:10.1103/PhysRevA.59.141

    MathSciNet  Article  Google Scholar 

  31. Werner RF (1989) Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys Rev A 40:4277–4281. doi:10.1103/PhysRevA.40.4277

    Article  Google Scholar 

Download references

Acknowledgements

We thank Lin Chen for helpful comments on the pre-print. MB was partly supported by NSERC and FCAR through INTRIQ. AB was partly supported by NSERC, Industry Canada and CIFAR. TM was partly supported by the Israeli MOD. AB and TM were partly supported The Gerald Schwartz and Heather Reisman Foundation. AB is currently at the Center for Quantum Information and Quantum Control at the University of Toronto.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aharon Brodutch.

Ethics declarations

Conflict of interest

The a authors declare that they have no conflict of interest.

Additional information

Communicated by C. M. Vide and A. H. Dediu.

Appendices

Appendix

The Peres entanglement criterion

Here are a few relevant remarks using the notations of the main article.

Transpose and partial transpose

Given a Hilbert space \({\mathscr {H}}\) and a basis \(\big \{|{i} \rangle \big \}\) (we always assume finite dimensional systems), the transpose is defined by linearity on basis operators \(|{i_1} \rangle {\langle {i_2}|}\) by \({T}(|{i_1} \rangle {\langle {i_2}|}) = |{i_2} \rangle {\langle {i_1}|}\). It follows that for any linear operator L, \({\langle {i_1}|}{T}(L)|{i_2} \rangle = {\langle {i_2}|}\,L\,|{i_1} \rangle \). If \(\rho \) is a state and \(\rho = \sum _i \lambda _i |{\varphi _i} \rangle {\langle {\varphi _i}|}\), one can check that \({T}(\rho ) = \sum _i \lambda _i |{{\overline{\varphi }}_i} \rangle {\langle {{\overline{\varphi }}_i}|}\) where \(|{{\overline{\varphi }}} \rangle = \sum _i {\overline{a}}_i |{i} \rangle \) if \(|{\varphi } \rangle = \sum _i a_i|{i} \rangle \), \({\overline{a}}_i\) being the complex conjugate of \(a_i\). It follows that \({T}(\rho )\) is also a state, with same eigenvalues as \(\rho \).

Given a compound system described by \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\), the partial transpose with respect to the A system is simply the operator \(({T}\otimes {I})\), i.e.,

$$\begin{aligned} ({T}\otimes {I})\Big (|{i_1} \rangle {\langle {i_2}|}\otimes |{j_1} \rangle {\langle {j_2}|}\Big ) = |{i_2} \rangle {\langle {i_1}|}\otimes |{j_1} \rangle {\langle {j_2}|} \end{aligned}$$

on basis elements. It also follows that for any operator L on \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\)

$$\begin{aligned} {\langle {i_1j_1}|}({T}\otimes {I})(L)|{i_2j_2} \rangle = {\langle {i_2j_1}|}\,L\,|{i_1j_2} \rangle \end{aligned}$$

The Peres Criterion

A state \(\rho \) of a bipartite system \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\) is said to be separable if it can be written in the form

$$\begin{aligned} \rho = \sum _i p_i\, \rho ^A_i \otimes \rho ^B_i \quad p_i \ge 0,\ \sum _i p_i = 1 \end{aligned}$$
(6)

where the \(\rho ^A_i\) (resp. \(\rho ^B_i\)) are states of \({\mathscr {H}}_A\) (resp. \({\mathscr {H}}_B\)); if \(\rho \) is not separable, it is said to be entangled. If \(\rho \) is given by (6), then

$$\begin{aligned} ({T}\otimes {I})(\rho ) = \sum _i p_i {T}(\rho ^A_i)\otimes \rho ^B_i \end{aligned}$$

and since the \({T}(\rho ^A_i)\) are states, this implies that \(({T}\otimes {I})(\rho )\) is itself a state (and separable). This implies in turn that \(({T}\otimes {I})(\rho )\) must be positive semi-definite. As a consequence, if \(({T}\otimes {I})(\rho )\) is not positive semi-definite, then \(\rho \) is not separable, i.e., it is entangled, that is, the statement of the Peres criterion of entanglement (Peres 1996).

Checking for positivity

An operator P is positive semi-definite if it is Hermitian and if for all pure states \(|{\varphi } \rangle \), \({\langle {\varphi }|} P|{\varphi } \rangle \ge 0\) (iff P has no negative eigenvalue). For any state \(\rho \) of \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\), \(({T}\otimes {I})(\rho )\) is always Hermitian. To prove that it is not positive semi-definite, we need only find a \(|{{\varPsi }} \rangle \) such that \({\langle {{\varPsi }}|}({T}\otimes {I})(\rho )|{{\varPsi }} \rangle < 0\). The partial transpose, however, depends on the basis chosen for \({\mathscr {H}}_A\). We now show (using our notations) that whether \(({T}\otimes {I})(\rho )\) is positive semi-definite or not does not depend on the choice of that basis. Indeed, let \(|{e_i} \rangle \) be any orthonormal basis of \({\mathscr {H}}_A\). Then \(\rho \) can always be written (in a unique way) as \(\rho = \sum _{ij} |{e_i} \rangle {\langle {e_j}|}\otimes \rho _{ij}\) where the \(\rho _{ij}\) are operators of \({\mathscr {H}}_B\). Let \({T}_e\) be the transpose operator in the basis e, i.e., \({T}_e(|{e_i} \rangle {\langle {e_j}|}) = |{e_j} \rangle {\langle {e_i}|}\). Then

$$\begin{aligned} ({T}_e\otimes I)(\rho )&= \sum _{ij} {T}_e(|{e_i} \rangle {\langle {e_j}|})\otimes \rho _{ij} = \sum _{ij} |{e_j} \rangle {\langle {e_i}|}\otimes \rho _{ij}\\ ({T}\otimes {I})(\rho )&= \sum _{ij} T(|{e_i} \rangle {\langle {e_j}|})\otimes \rho _{ij} = \sum _{ij} |{{\overline{e}}_j} \rangle {\langle {{\overline{e}}_i}|}\otimes \rho _{ij} \end{aligned}$$

The \(|{{\overline{e}}_i} \rangle \) also form an orthonormal basis of \({\mathscr {H}}_A\). Now let \(|{{\varPsi }_e} \rangle = \sum _i |{e_i} \rangle |{\psi _i} \rangle \) be any pure state of \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\). Then \(|{{\varPsi }} \rangle = \sum _i |{{\overline{e}}_i} \rangle |{\psi _i} \rangle \) is also a pure state and

$$\begin{aligned}&{\langle {{\varPsi }}|} ({T}\otimes {I})(\rho )|{{\varPsi }} \rangle = {\langle {{\varPsi }_e}|}({T}_e\otimes I)(\rho )|{{\varPsi }_e} \rangle \nonumber \\&\quad = \sum _{ij} {\langle {\psi _j}|}\rho _{ij}|{\psi _i} \rangle \end{aligned}$$

Proof of Lemma 10

Proof

Let us assume P is positive semi-definite: \(P=\sum _i \lambda _i |{\varphi _i} \rangle {\langle {\varphi _i}|}\) with \(\lambda _i\ge 0\). If \({\langle {\varphi }|}P|{\varphi } \rangle = 0\), then \(\sum _i \lambda _i |\langle {\varphi } | {\varphi _i} \rangle |^2 = 0\) and \(\lambda _i\langle {\varphi } | {\varphi _i} \rangle =0\) for all i and thus \({\langle {\varphi }|}P|{\psi } \rangle = \sum _i \lambda _i \langle {\varphi } | {\varphi _i} \rangle \langle {\varphi _i} | {\psi } \rangle = 0\) for all \(|{\psi } \rangle \). \(\square \)

Distillability

Note that the Peres criterion is not a characterization. If the partial transpose of \(\rho \) is positive semi-definite, \(\rho \) may still be entangled. Furthermore, if a state \(\rho _\textit{ppt-ent}\) is entangled and admits a positive partial transpose then it is not distillable (namely, one cannot distill a singlet state out of many copies of \(\rho _ ppt-ent \) via local operations and classical communication). Such states are said to have “bound entanglement.” A characterization of distillable states can be found in Horodecki (1997). Here is the lemma as we use it, as stated in Kraus et al. (2002).

Lemma 25

(Kraus et al. 2002; Horodecki 1997) A state \(\rho \) of \({\mathscr {H}}_A\otimes {\mathscr {H}}_B\) is distillable if and only if there exists a positive integer N and a state \(|{{\varPsi }} \rangle = |{e_1f_1} \rangle + |{e_2f_2} \rangle \) such that

$$\begin{aligned} {\langle {{\varPsi }}|} \,({T}\otimes {I})(\rho ^{\otimes N})\,|{{\varPsi }} \rangle < 0, \end{aligned}$$

where \(\{e_1,e_2\}\) (resp. \(\{f_1,f_2\}\)) are two unnormalized orthogonal vectors of \({\mathscr {H}}_A^{\otimes N}\) (resp. \({\mathscr {H}}_B^{\otimes N}\)).

Proof of Proposition 14 using matrices

When the states \(|{ij} \rangle \) are put in lexicographic order, the partial transpose \(({T}\otimes {I})\) corresponds to transposing blocks in the block matrix, whereas \(({I}\otimes {T})\) corresponds to transposing each of the blocks individually. The matrix of Proposition 14 is a \(3\times 3\) block matrix, with \(3\times 3\) blocks.

We first calculate for both \(\rho _0\) and \(\rho _1\) the entries (11, 11) and (01, 10) (row 01, column 10 of their matrix). Those are \({\langle {11}|}\rho _0|{11} \rangle =0\), and \({\langle {01}|}\rho _0|{10} \rangle =0\) for \(\rho _0\) and \({\langle {11}|}\rho _1|{11} \rangle =0\) and \({\langle {10}|}\rho _1|{10} \rangle =1/2\) for \(\rho _1\). Those values were obtained in the main text. The matrices for \(\rho _0\) and \(\rho _1\) are then the following (useless entries being kept blank).

Then, the \(3\times 3\) block matrix is transposed, giving, respectively, for \(({T}\otimes {I})(\rho _0)\) and \(({T}\otimes {I})(\rho _1)\) the matrices:

The matrix of \(({T}\otimes {I})(\rho _\epsilon ) = (1-\epsilon )({T}\otimes {I})(\rho _0) + \epsilon ({T}\otimes {I})(\rho _1)\) is then

We see clearly that the matrix of \(({T}\otimes {I})(\rho _\epsilon )\) has a 0 diagonal entry for which there is a nonzero entry on the corresponding row (or corresponding column). That implies that the matrix is not positive semi-definite and consequently that \(\rho _\epsilon \) is entangled.

Of course, the blank values in the density operator for \(\rho _1\) could take any value without affecting the result; in fact, any density operator \(\rho _1\) such that \({\langle {11}|}\rho _1|{11} \rangle = 0\) and \({\langle {01}|}\rho _1|{10} \rangle \ne 0\) could have been used instead to give entangled states that arbitrarily close to \(\rho _0\).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boyer, M., Brodutch, A. & Mor, T. Extrapolated quantum states, void states and a huge novel class of distillable entangled states. Soft Comput 21, 5543–5556 (2017). https://doi.org/10.1007/s00500-017-2518-6

Download citation

Keywords

  • Quantum computing and quantum information
  • Entanglement
  • Distillability
  • Discord