Soft Computing

, Volume 21, Issue 19, pp 5543–5556 | Cite as

Extrapolated quantum states, void states and a huge novel class of distillable entangled states

Focus

Abstract

A nice and interesting property of any pure tensor product state is that each such state has distillable entangled states at an arbitrarily small distance \(\epsilon \) in its neighborhood. We say that such nearby states are \(\epsilon \)-entangled, and we call the tensor product state in that case, a “boundary separable state,” as there is entanglement at any distance from this “boundary.” Here we find a huge class of separable states that also share the property mentioned above—they all have \(\epsilon \)-entangled states at any small distance in their neighborhood. Furthermore, the entanglement they have is proved to be distillable. We then extend this result to the discordant/classical cut and show that all classical states (correlated and uncorrelated) have discordant states at distance \(\epsilon \), and provide a constructive method for finding \(\epsilon \)-discordant states.

Keywords

Quantum computing and quantum information Entanglement Distillability Discord 

Notes

Acknowledgements

We thank Lin Chen for helpful comments on the pre-print. MB was partly supported by NSERC and FCAR through INTRIQ. AB was partly supported by NSERC, Industry Canada and CIFAR. TM was partly supported by the Israeli MOD. AB and TM were partly supported The Gerald Schwartz and Heather Reisman Foundation. AB is currently at the Center for Quantum Information and Quantum Control at the University of Toronto.

Compliance with ethical standards

Conflict of interest

The a authors declare that they have no conflict of interest.

References

  1. Acín A, Augusiak R, Cavalcanti D, Hadley C, Korbicz JK, Lewenstein M, Masanes L, Piani M (2010) Unified framework for correlations in terms of local quantum observables. Phys Rev Lett 104(140):404. doi:10.1103/PhysRevLett.104.140404 Google Scholar
  2. Bengtsson I, Życzkowski K (2006) Geometry of quantum states: an introduction to quantum entanglement. Cambridge University Press, CambridgeCrossRefMATHGoogle Scholar
  3. Bennett CH, DiVincenzo DP, Fuchs CA, Mor T, Rains E, Shor PW, Smolin JA, Wootters WK (1999a) Quantum nonlocality without entanglement. Phys Rev A 59:1070–1091. doi:10.1103/PhysRevA.59.1070 MathSciNetCrossRefGoogle Scholar
  4. Bennett CH, DiVincenzo DP, Mor T, Shor PW, Smolin JA, Terhal BM (1999b) Unextendible product bases and bound entanglement. Phys Rev Lett 82:5385–5388. doi:10.1103/PhysRevLett.82.5385 MathSciNetCrossRefMATHGoogle Scholar
  5. Boyer M, Brodutch A, Mor T (2017) Entanglement and deterministic quantum computing with one qubit. Phys Rev A (2017, to appear). arXiv:1606.05283
  6. Boyer M, Mor T (2014) Extrapolated states, void states, and a huge novel class of distillable entangled states. In: Dediu AH, Lozano M, Martín-Vide C (eds) Theory and practice of natural computing. Lecture notes in computer science, vol 8890. Springer, Berlin, pp 107–118. doi:10.1007/978-3-319-13749-0_10 Google Scholar
  7. Braunstein SL, Caves CM, Jozsa R, Linden N, Popescu S, Schack R (1999) Separability of very noisy mixed states and implications for nmr quantum computing. Phys Rev Lett 83:1054–1057. doi:10.1103/PhysRevLett.83.1054 CrossRefGoogle Scholar
  8. Brodutch A (2013) Discord and quantum computational resources. Phys Rev A 88(022):307. doi:10.1103/PhysRevA.88.022307 Google Scholar
  9. Brodutch A, Terno DR (2010) Quantum discord, local operations, and Maxwell’s demons. Phys Rev A 81(062):103. doi:10.1103/PhysRevA.81.062103 MathSciNetGoogle Scholar
  10. Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S (2014) Bell nonlocality. Rev Mod Phys 86:419–478. doi:10.1103/RevModPhys.86.419 CrossRefGoogle Scholar
  11. Cable H, Browne D (2015) Exact and efficient simulation of concordant computation N. N J Phys 17:113049. doi:10.1088/1367-2630/17/11/113049 CrossRefGoogle Scholar
  12. Chen L, Djokovic DZ (2011) Distillability and PPT entanglement of low-rank quantum states. J Phys A: Math Theor 44:285303. doi:10.1088/1751-8113/44/28/285303
  13. Chen J, Duan R, Ji Z, Ying M, Yu J (2008) Existence of universal entangler. J Math Phys 49(1):012103. doi:10.1063/1.2829895 MathSciNetCrossRefMATHGoogle Scholar
  14. Datta A, Shaji A (2011) Quantum discord and quantum computing—an appraisal. Int J Quantum Inf 9:1787. doi:10.1142/S0219749911008416 MathSciNetCrossRefMATHGoogle Scholar
  15. Dür W, Vidal G, Cirac JI (2000) Three qubits can be entangled in two inequivalent ways. Phys Rev A 62(062):314. doi:10.1103/PhysRevA.62.062314 MathSciNetGoogle Scholar
  16. Ferraro A, Aolita L, Cavalcanti D, Cucchietti FM, Acín A (2010) Almost all quantum states have nonclassical correlations. Phys Rev A 81(052):318. doi:10.1103/PhysRevA.81.052318 Google Scholar
  17. Groisman B, Kenigsberg D, Mor T (2007) “Quantumness” versus “classicality” of quantum states. arXiv:quant-ph/0703103
  18. Gühne O, Lütkenhaus N (2007) Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states. J Phys Conf Ser 67(1):012004. doi:10.1088/1742-6596/67/1/012004 CrossRefGoogle Scholar
  19. Gurvits L (2003) Classical deterministic complexity of Edmonds’ problem and quantum entanglement. In: Proceedings of the thirty-fifth annual ACM symposium on theory of computing, ACM, New York, NY, USA, STOC ’03, pp 10–19. doi:10.1145/780542.780545
  20. Gurvits L, Barnum H (2002) Largest separable balls around the maximally mixed bipartite quantum state. Phys Rev A 66:06231. doi:10.1103/PhysRevA.66.062311 CrossRefGoogle Scholar
  21. Henderson L, Vedral V (2001) Classical, quantum and total correlations. J Phys A Math Gen 34(35):6899. doi:10.1088/0305-4470/34/35/315
  22. Horodecki P (1997) Separability criterion and inseparable mixed states with positive partial transposition. Phys Lett A 232(5):333–339. doi:10.1016/S0375-9601(97)00416-7 MathSciNetCrossRefMATHGoogle Scholar
  23. Horodecki M, Horodecki P, Horodecki R (1997) Inseparable two spin-\(\frac{1}{2}\) density matrices can be distilled to a singlet form. Phys Rev Lett 78:574–577. doi:10.1103/PhysRevLett.78.574 CrossRefMATHGoogle Scholar
  24. Horodecki R, Horodecki P, Horodecki M, Horodecki K (2009) Quantum entanglement. Rev Mod Phys 81:865–942. doi:10.1103/RevModPhys.81.865 MathSciNetCrossRefMATHGoogle Scholar
  25. Kraus B, Lewenstein M, Cirac JI (2002) Characterization of distillable and activatable states using entanglement witnesses. Phys Rev A 65(042):327. doi:10.1103/PhysRevA.65.042327 Google Scholar
  26. Modi K, Paterek T, Son W, Vedral V, Williamson M (2010) Unified view of quantum and classical correlations. Phys Rev Lett 104(080):501. doi:10.1103/PhysRevLett.104.080501 MathSciNetGoogle Scholar
  27. Modi K, Brodutch A, Cable H, Paterek T, Vedral V (2012) The classical-quantum boundary for correlations: discord and related measures. Rev Mod Phys 84:1655–1707. doi:10.1103/RevModPhys.84.1655 CrossRefGoogle Scholar
  28. Ollivier H, Zurek WH (2001) Quantum discord: a measure of the quantumness of correlations. Phys Rev Lett 88(017):901. doi:10.1103/PhysRevLett.88.017901 MATHGoogle Scholar
  29. Peres A (1996) Separability criterion for density matrices. Phys Rev Lett 77:1413–1415. doi:10.1103/PhysRevLett.77.1413 MathSciNetCrossRefMATHGoogle Scholar
  30. Vidal G, Tarrach R (1999) Robustness of entanglement. Phys Rev A 59:141–155. doi:10.1103/PhysRevA.59.141 MathSciNetCrossRefGoogle Scholar
  31. Werner RF (1989) Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys Rev A 40:4277–4281. doi:10.1103/PhysRevA.40.4277 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.DIROUniversité de MontréalMontrealCanada
  2. 2.Department of Physics and Astronomy and Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  3. 3.Computer Science DepartmentTechnionHaifaIsrael

Personalised recommendations