Advertisement

Soft Computing

, Volume 22, Issue 8, pp 2567–2582 | Cite as

Multidimensional knapsack problem optimization using a binary particle swarm model with genetic operations

  • Luis Fernando Mingo López
  • Nuria Gómez Blas
  • Alberto Arteta Albert
Methodologies and Application

Abstract

Particle swarm optimization is a heuristic and stochastic technique inspired by the flock of birds when looking for food. It is currently being used to solve continuous and discrete optimization problems. This paper proposes a hybrid, genetic inspired algorithm that uses random mutation/crossover operations and adds penalty functions to solve a particular case: the multidimensional knapsack problem. The algorithm implementation uses particle swarm for binary variables with a genetic operator. The particles update is performed in the following way: first using the iterative process (standard algorithm) described in the PSO algorithm and then using the best particle position (local) and the best global position to perform a random crossover/mutation with the original particle. The mutation and crossover operations specifically apply to personal and global best individuals. The obtained results are promising compared to those obtained by using the probability binary particle swarm optimization algorithm.

Keywords

Binary particle swarm optimization Combinatory optimization Multidimensional knapsack problem Genetic operations 

Notes

Acknowledgements

The research was partially supported by Spanish Research Agency Projects TRA2013-48314-C3-2-R and SEGVAUTO TRIES (S2013/MIT-27139).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Beasley J (1990) Or-library: distributing test problems by electronic mail. J Oper Res Soc 41(11):1069–1072CrossRefGoogle Scholar
  2. Bratton D, Kennedy J (2007) Defining a standard for particle swarm optimization. In: 2007 IEEE Swarm Intelligence Symposium, SIS 2007, Honolulu, Hawaii, USA, 1–5 April 2007, pp 120–127Google Scholar
  3. Chih M, Lin CJ, Chern MS, Ou TY (2014) Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Appl Math Model 38(4):1338–1350. doi: 10.1016/j.apm.2013.08.009 MathSciNetCrossRefGoogle Scholar
  4. Chu P, Beasley J (1998) A genetic algorithm for the multidimensional knapsack problem. J Heuristics 4(1):63–86. doi: 10.1023/A:1009642405419 CrossRefzbMATHGoogle Scholar
  5. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. Trans Evol Comput 6(1):58–73CrossRefGoogle Scholar
  6. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, 1995. MHS ’95. pp 39–43. doi: 10.1109/MHS.1995.494215
  7. Haddar B, Khemakhem M, Hanafi S, Wilbaut C (2016) A hybrid quantum particle swarm optimization for the multidimensional knapsack problem. Eng Appl Artif Intell 55:1–13. doi: 10.1016/j.engappai.2016.05.006 CrossRefGoogle Scholar
  8. Haddar B, Khemakhem M, Rhimi H, Chabchoub H (2016b) A quantum particle swarm optimization for the 0–1 generalized knapsack sharing problem. Nat Comput 15(1):153–164. doi: 10.1007/s11047-014-9470-5 MathSciNetCrossRefGoogle Scholar
  9. Hembecker F, Lopes H, Godoy W (2007) Particle swarm optimization for the multidimensional knapsack problem. Springer, BerlinCrossRefGoogle Scholar
  10. Kellerer H, Pferschy U, Pisinger D (2004) Knapsack problems. Springer, BerlinCrossRefzbMATHGoogle Scholar
  11. Kennedy J, Eberhart R (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings of the IEEE international conference on systems, man, and cybernetics, IEEE computer society, Washington, DC, USA, vol 5. pp 4104–4108Google Scholar
  12. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks. pp 1942–1948Google Scholar
  13. Kennedy J, Mendes R (2006) Neighborhood topologies in fully informed and best-of-neighborhood particle swarms. IEEE Trans Syst Man Cybern C (Appl Rev) 36(4):515–519. doi: 10.1109/TSMCC.2006.875410 CrossRefGoogle Scholar
  14. Korenaga T, Hatanaka T, Uosaki K (2007) Performance improvement of particle swarm optimization for high-dimensional function optimization. In: 2007 IEEE congress on evolutionary computation. pp 3288–3293Google Scholar
  15. Korte B, Vygen J (2007) Combinatorial optimization: theory and algorithms, 4th edn. Springer Publishing Company, Incorporated, BerlinzbMATHGoogle Scholar
  16. Ktari R, Chabchoub H (2013) Essential particle swarm optimization queen with tabu search for MKP resolution. Computing 95(9):897–921. doi: 10.1007/s00607-013-0316-2 CrossRefzbMATHGoogle Scholar
  17. Labed S, Gherboudj A, Chikhi S (2011) Article: a modified hybrid particle swarm optimization algorithm for multidimensional knapsack problem. Int J Comput Appl 34(2):11–16 (full text available)Google Scholar
  18. Li D, Sun X (eds) (2006) Surrogate duality theory. Springer, BostonGoogle Scholar
  19. Lin CJ, Chern MS, Chih M (2016) A binary particle swarm optimization based on the surrogate information with proportional acceleration coefficients for the 0–1 multidimensional knapsack problem. J Ind Prod Eng 33(2):77–102. doi: 10.1080/21681015.2015.1111263 Google Scholar
  20. Martello S, Toth P (1985) Algorithm 632: a program for the 0–1 multiple knapsack problem. ACM Trans Math Softw 11(2):135–140CrossRefzbMATHGoogle Scholar
  21. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations. Wiley, New YorkzbMATHGoogle Scholar
  22. Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32CrossRefGoogle Scholar
  23. Parsopoulos K, Vrahatis M (2002) Particle swarm optimization method for constrained optimization problems. In: Proceedings of the Euro-international symposium on computational intelligence 2002. IOS Press, pp 214–220Google Scholar
  24. Parsopoulos K, Vrahatis M (2002b) Recent approaches to global optimization problems through particle swarm optimization. Nat Comput Int J 1(2–3):235–306MathSciNetCrossRefzbMATHGoogle Scholar
  25. Potter M, Jong KD (1994) A cooperative coevolutionary approach to function optimization. In: Proceedings of the international conference on evolutionary computation. The third conference on parallel problem solving from nature: parallel problem solving from nature. Springer, London, UK, PPSN III, pp 249–257Google Scholar
  26. Shen Q, Jiang JH, Jiao CX, li Shen G, Yu RQ (2004) Modified particle swarm optimization algorithm for variable selection in MLR and PLS modeling: QSAR studies of antagonism of angiotensin II antagonists. Eur J Pharm Sci 22(2–3):145–152CrossRefGoogle Scholar
  27. Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of IEEE international conference on evolutionary computation. IEEE Computer Society, Washington, DC, USA, pp 69–73Google Scholar
  28. Shih W (1979) A branch and bound method for the multiconstraint zero-one knapsack problem. J Oper Res Soc 30(4):369–378. doi: 10.1057/jors.1979.78
  29. Shizuo S, Toyoda Y (1968) An approach to linear programming with 0–1 variables. Manag Sci 15(4):B196–B207CrossRefGoogle Scholar
  30. Wan NF, Nolle L (2009) Solving a multi-dimensional knapsack problem using a hybrid particle swarm optimization algorithm. In: ECMS. pp 93–98Google Scholar
  31. Wang L, Wang X, Fu J, Zhen L (2008) A novel probability binary particle swarm optimization algorithm and its application. JSW 3(9):28–35CrossRefGoogle Scholar
  32. Weingartner M, Ness D (1967) Methods for the solution of multidimensional 0/1 knapsack problems. Oper Res 15:83–103CrossRefGoogle Scholar
  33. Zhang L, Malik S (2002) The quest for efficient Boolean satisfiability solvers. In: Proceedings of the 14th international conference on computer aided verification. Springer, London, UK, CAV ’02, pp 17–36Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Luis Fernando Mingo López
    • 1
  • Nuria Gómez Blas
    • 1
  • Alberto Arteta Albert
    • 2
  1. 1.Dept. Sistemas Informáticos, Escuela Técnica Superior de Ingeniería de Sistemas InformáticosUniversidad Politécnica de MadridMadridSpain
  2. 2.Computer Science DepartmentTroy UniversityTroyUSA

Personalised recommendations