Skip to main content

A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions

Abstract

In this paper, we compare the performance of Distributed Coordination Function (DCF) and Enhanced Distributed Channel Access (EDCA) for normal and uniform distributions of mesh clients considering two Wireless Mesh Network (WMN) architectures. As evaluation metrics, we consider throughput, delay, jitter and fairness index metrics. For simulations, we used WMN-GA simulation system, ns-3 and Optimized Link State Routing. The simulation results show that for normal distribution, the throughput of I/B WMN is higher than Hybrid WMN architecture. For uniform distribution, in case of I/B WMN, the throughput of EDCA is a little bit higher than Hybrid WMN. However, for Hybrid WMN, the throughput of DCF is higher than EDCA. For normal distribution, the delay and jitter of Hybrid WMN are lower compared with I/B WMN. For uniform distribution, the delay and jitter of both architectures are almost the same. However, in the case of DCF for 20 flows, the delay and jitter of I/B WMN are lower compared with Hybrid WMN. For I/B architecture, in case of normal distribution the fairness index of DCF is higher than EDCA. However, for Hybrid WMN, the fairness index of EDCA is higher than DCF. For uniform distribution, the fairness index of few flows is higher than others for both WMN architectures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Akyildiz IF, Wang X, Wang W (2005) Wireless mesh networks: a survey. Comput Netw 47(4):445–487

    Article  MATH  Google Scholar 

  • Clausen T, Jacquet P (2003) Optimized link state routing protocol (OLSR). RFC 3626 (experimental)

  • Franklin A, Murthy C (2007) Node placement algorithm for deployment of two-tier wireless mesh networks. In: IEEE GLOBECOM-2007. pp 4823–4827

  • IEEE 802.11 (2007) Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. In: IEEE Computer Society Studies, June 2007 (Online). http://standards.ieee.org/getieee802/download/802.11-2007

  • IEEE-SA (1999) IEEE-SA (1999) IEEE 802.11 part 11: wireless LAN medium access control (MAC) and physical layer (PHY) specifications, IEEE Standards Association. http://standards.ieee.org/about/get/802/802.11.html

  • IEEE-SA (2005) IEEE 802.11e amendment: medium access control (MAC) quality of service (QoS) enhancements, IEEE Standards Association. http://standards.ieee.org/about/get/802/802.11.html

  • Ikeda M, Oda T, Kulla E, Hiyama M, Barolli L, Younas M (2012) Performance evaluation of WMN considering number of connections using ns-3 simulator. In: The third international workshop on methods, analysis and protocols for wireless communication (MAPWC 2012). Victoria, Canada, November 12–14, pp 498–502

  • Lim A, Rodrigues B, Wang F, Xua Zh (2005) \(k\)-Center problems with minimum coverage. Theor Comput Sci 332(1–3):1–17

    Article  MathSciNet  MATH  Google Scholar 

  • Mukherjee S, Xiao-Hong P, Gao Q (2009) QoS performances of IEEE 802.11 EDCA and DCF: a testbed approach. In: 5th international conference wireless communications, networking and mobile computing (WiCom ’09). pp 1–5

  • Muthaiah SN, Rosenberg C (2008) Single gateway placement in wireless mesh networks. In: Proceedings of 8th international IEEE symposium on computer networks, Turkey, pp 4754–4759

  • Oda T, Barolli A, Spaho E, Xhafa F, Barolli L, Takizawa M (2012) Evaluation of WMN-GA for Different Mutation Operators, International Journal of Space-Based and Situated Computing (IJSSC). Inderscience 2(3):149–157

    Google Scholar 

  • Oda T, Barolli A, Xhafa F, Barolli L, Ikeda M, Takizawa M (2013) WMN-GA: a simulation system for WMNs and its evaluation considering selection operators. J Ambient Intell Humaniz Comput (JAIHC) 4(3):323–330

    Article  Google Scholar 

  • Oda T, Barolli A, Spaho E, Barolli L, Xhafa F (2014a) Analysis of mesh router placement in wireless mesh networks using friedman test. In: Proceedings of the 28th IEEE international conference on advanced information networking and applications (IEEE AINA). Victoria, Canada, May 2014, pp 289–296

  • Oda T, Sakamoto S, Barolli A, Ikeda M, Barolli L, Xhafa F (2014b) A GA-based simulation system for WMNs: performance analysis for different WMN architectures considering TCP. In: 2014 eighth international conference on broadband and wireless computing, communication and applications (BWCCA). Guangzhou, China, pp 120–126

  • Oda T, Elmazi D, Barolli A, Sakamoto S, Barolli L, Xhafa F (2015) A genetic algorithm based system for wireless mesh networks: analysis of system data considering different routing protocols and architectures. In: Journal of Soft Computing (SOCO). Springer, Published online 31 March 2015. doi:10.1007/s00500-015-1663-z, pp 1–14

  • Tang M (2009) Gateways placement in backbone wireless mesh networks. Int J Commun Netw Syst Sci 2(1):45–50

    Google Scholar 

  • The Network Simulator ns-2 (2016) http://www.isi.edu/nsnam/ns/. Accessed 15 Oct 2016

  • The Network Simulator ns-3 (2016) https://www.nsnam.org/. Accessed 15 Oct 2016

  • Vanhatupa T, Hännikäinen M, Hämäläinen TD (2007) Genetic algorithm to optimize node placement and configuration for WLAN planning. In: Proceedings of 4th international symposium on wireless communication systems. pp 612–616

  • Wang J, Xie B, Cai K, Agrawal DP (2007) Efficient mesh router placement in wireless mesh networks. MASS, Pisa

    Book  Google Scholar 

  • Xhafa F, Sanchez C, Barolli L (2009) Locals Search Algorithms for Efficient Router Nodes Placement in Wireless Mesh Networks. In: International conference on network-based information systems (NBiS). pp 572–579

Download references

Acknowledgements

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Oda.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barolli, A., Oda, T., Matsuo, K. et al. A GA-based simulation system for WMNs: comparison analysis for different number of flows, client distributions, DCF and EDCA functions. Soft Comput 22, 2547–2555 (2018). https://doi.org/10.1007/s00500-017-2508-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2508-8

Keywords