Skip to main content
Log in

A novel evolutionary method of structure-diversified digital filter design and its experimental study

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

Digital filters are now key components in many modern digital systems. This paper proposed a novel evolutionary method to design structure-diversified digital filters. On the investigation of the existing evolution-based digital filter design methods, most state-of-the-art works concentrate on the evolution of appropriate transfer functions for digital filters. However, a transfer function is not equivalent to a practical digital filter that has proper structure and can be implemented by a hardware directly. Some researchers proposed a synthesis method to generate the structure of digital filter from a specified transfer function. However, this method needs an existing transfer function as the prior knowledge. Compared with existing works on the evolution of digital filters, the proposed method is novel at the following aspect: the proposed method can directly evolve the structure and parameters of digital filter without the pre-definition of the transfer function. The only prior knowledge we need is the specification of the design target, such as the frequency range of the passband and stop-band. In the experimental study, a significant characteristic is revealed that the proposed method is able to evolve structure-diversified filters with approximate frequency response. The proposed method is a prototype, and it is demonstrated to be a promising way of digital filter design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Aggarwal A, Rawat TK, Upadhyay DK (2016) Design of optimal digital FIR filters using evolutionary and swarm optimization techniques. Int J Electron Commun 70:373–385

    Article  Google Scholar 

  • Babayan-Mashhadi S, Lotfi R (2014) Analysis and design of a low-voltage low-power double-tail comparator. IEEE Trans Very Large Scale Integr (VLSI) Syst 22:343–352. doi:10.1109/TVLSI.2013.2241799

    Article  Google Scholar 

  • Boudjelaba K, Ros F, Chikouche D (2014) An efficient hybrid genetic algorithm to design finite impulse response filters. Expert Syst Appl 41:5917–5937. doi:10.1016/j.eswa.2014.03.034

    Article  Google Scholar 

  • Boudjelaba K, Ros F, Chikouche D (2014b) Potential of particle swarm optimization and genetic algorithms for fir filter design. Circuits Syst Signal Process. doi:10.1007/s00034-014-9800-y

    Google Scholar 

  • Chandra A, Chattopadhyay S (2014) A novel approach for coefficient quantization of low-pass finite impulse response filter using differential evolution algorithm. Signal Image Video Process. doi:10.1007/s11760-012-0359-4

    Google Scholar 

  • Chen H (2002) The matrix expression of signal flow graph and its application in system analysis software. Chin J Electron 11:361–363

    Google Scholar 

  • Choudhary V, Ledezma E, Ayyanar R, Button RM (2008) Fault tolerant circuit topology and control method for input-series and output-parallel modular DC–DC converters. IEEE Trans Power Electron 23:402–411. doi:10.1109/TPEL.2007.911845

    Article  Google Scholar 

  • Dai C, Chen W, Zhu Y (2010) Seeker optimization algorithm for digital IIR filter design. IEEE Trans Ind Electron 57:1710–1718. doi:10.1109/TIE.2009.2031194

    Google Scholar 

  • Dhaliwal KK, Dhillon JS (2016) Integrated cat swarm optimization and differential evolution algorithm for optimal IIR filter design in multi-objective framework. Circuits Syst Signal Process. doi:10.1007/s00034-016-0304-9

    MATH  Google Scholar 

  • Gold B, Jordan KL (1969) A direct search procedure for designing finite duration impulse response filter. IEEE Trans Audio Electroacoust 17:33–36

    Article  Google Scholar 

  • Huang C, Li G, Xu Z, Yu A, Chang L (2012) Design of optimal digital lattice filter structures based on genetic algorithm. Signal Process 92:989–998. doi:10.1016/j.sigpro.2011.10.011

    Article  Google Scholar 

  • Kar R, Mandala D, Mondal S, Ghoshal SP (2012) Craziness based particle swarm optimization algorithm for FIR band stop filter design. Swarm Evolut Comput 7:58–64. doi:10.1016/j.swevo.2012.05.002

    Article  Google Scholar 

  • Kim K-J, Wong A, Lipson H (2009) Automated synthesis of resilient and tamper-evident analog circuits without a single point of failure. Genet Program Evol Mach 11:35–59. doi:10.1007/s10710-009-9085-2

    Article  Google Scholar 

  • Li B, Wang Y, Weise T, Long L (2013) Fixed-point digital IIR filter design using two-stage ensemble evolutionary algorithm. Appl Soft Comput 13:329–338. doi:10.1016/j.asoc.2012.09.004

    Article  Google Scholar 

  • Liu M, He J (2013) An evolutionary negative-correlation framework for robust analog-circuit design under uncertain faults. IEEE Trans Evolut Comput 17:640–665. doi:10.1109/TEVC.2012.2228208

    Article  Google Scholar 

  • Lohn JD, Colombano SP (1999) A circuit representation technique for automated circuit design. IEEE Trans Evolut Comput 3(3):205–219. doi:10.1109/4235.788491

  • Mandal S, Ghoshal SP, Kar R, Mandal D (2012) Design of optimal linear phase FIR high pass filter using craziness based particle swarm optimization technique. J King Saud Univ Comput Inf Sci 24:83–92. doi:10.1016/j.jksuci.2011.10.007

    Google Scholar 

  • Manuel M, Elias E (2013) Design of frequency response masking FIR filter in the canonic signed digit space using modified artificial bee colony algorithm. Eng Appl Artif Intell 26:660–668. doi:10.1016/j.engappai.2012.02.010

    Article  Google Scholar 

  • Mohammed S, Mahammad SN, Kamakoti V (2011) Hardware based genetic evolution of self-adaptive arbitrary response FIR filter. Appl Soft Comput 11:842–854. doi:10.1016/j.asoc.2010.01.004

    Article  Google Scholar 

  • Mondal S, Ghoshal SP, Kar R, Mandal D (2012) Differential evolution with wavelet mutation in digital finite impulse response filter design. J Optim Theory Appl 155:315–324. doi:10.1007/s10957-012-0028-3

    Article  MathSciNet  MATH  Google Scholar 

  • Namazi A, Nourani M, Saquib M (2010) A fault-tolerant interconnect mechanism for NMR nanoarchitectures. IEEE Trans Very Large Scale Integr (VLSI) Syst 18:1433–1446. doi:10.1109/TVLSI.2009.2024779

    Article  Google Scholar 

  • Oppenheim AV, Schafer RW (2010) Discrete-time signal processing, 3rd edn. Prentice Hall, New Jersey

    MATH  Google Scholar 

  • Pan S-T (2010) A canonic-signed-digit coded genetic algorithm for designing finite impulse response digital filte. Digital Signal Process 20:314–327. doi:10.1016/j.dsp.2009.06.024

    Article  Google Scholar 

  • Pan S (2011) Evolutionary computation on programmable robust IIR filter pole-placement design. IEEE Trans Instrumen Meas 60:1469–1479. doi:10.1109/TIM.2010.2086850

    Article  Google Scholar 

  • Parks TW, Mcclellan JH (1972) Chebyshev approximation for nonrecursive digital filters with linear phase. IEEE Trans Circuit Theory 19:189–194

    Article  Google Scholar 

  • Proakis J, Manolakis D (2007) Digital signal processing: principles, algorithms, and applications, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Rashtian H, Shirazi AHM, Mirabbasi S (2014) On the use of body biasing to improve linearity in low LO-power CMOS active mixers. Microelectron J 45:1026–1032. doi:10.1016/j.mejo.2014.05.001

    Article  Google Scholar 

  • Saha SK, Ghoshal SP, Kar R, Mandala D (2013) Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans 52:781–794. doi:10.1016/j.isatra.2013.07.009

    Article  Google Scholar 

  • Salcedo-Sanz S, Cruz-Roldán F, Heneghan C, Yao X (2007) Evolutionary design of digital filters with application to subband coding and data transmission. IEEE Trans Signal Process 55:1193–1203. doi:10.1109/TSP.2006.888883

    Article  MathSciNet  Google Scholar 

  • Sarangi A, Sarangi SK, Padhy SK, Panigrahi SP, Panigrahi BK (2014) Swarm intelligence based techniques for digital filter design. Appl Soft Comput. doi:10.1016/j.asoc.2013.06.001

    Google Scholar 

  • Sarkar S, Banerjee S (2014) An 8-bit low power DAC with re-used distributed binary cells architecture for reconfigurable transmitters. Microelectron J 45:666–677. doi:10.1016/j.mejo.2014.03.014

    Article  Google Scholar 

  • Sayilir S, Loke W-F, Lee J, Diamond H, Epstein B, Rhodes DL, Jung B (2014) A—90 dBm sensitivity wireless transceiver using VCO-PA-LNA-switch-modulator co-design for low power insect-basedwireless sensor networks. IEEE J Solid-State Circuits 49:996–1006. doi:10.1109/JSSC.2013.2293022

    Article  Google Scholar 

  • Shao P, Wu Z, Zhou X, Tran DC (2015) FIR digital filter design using improved particle swarm optimization based on refraction principle. Soft Comput. doi:10.1007/s00500-015-1963-3

  • Sharma I, Kuldeep B, Kumar A, Singh V (2016) Performance of swarm based optimization techniques for designing digital FIR filter: a comparative study. Eng Sci Technol Int J 19:1564–1572

    Article  Google Scholar 

  • Singh R, Verma HK (2013) Teaching learning-based optimization algorithm for parameter identification in the design of IIR filters. J Inst Eng (India): Ser B 94:285–294. doi:10.1007/s40031-013-0063-y

  • Sönmez Özsun S, Dündar G (2011) Simulation-based analog and RF circuit synthesis using a modified evolutionary strategies algorithm. Integr VLSI J 44:144–154. doi:10.1016/j.vlsi.2010.11.001

    Article  Google Scholar 

  • Srinivas M, Patnaik LM (1994) Genetic algorithms: a survey. Computer 27:17–26

    Article  Google Scholar 

  • Stanćić G, Nikolić S (2013) Digital linear phase notch filter design based on IIR all-pass filter application. Digit Signal Process 23:1065–1069. doi:10.1016/j.dsp.2013.01.006

    Article  MathSciNet  Google Scholar 

  • Tan KC, Yang YJ, Goh CK (2006) A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans Evolut Comput 10:527–549. doi:10.1109/TEVC.2005.860762

    Article  Google Scholar 

  • Tsai J-T, Chou J-H, Liu T-K (2006) Optimal design of digital IIR filters by using hybrid taguchi genetic algorithm. IEEE Trans Ind Electron 53:867–879. doi:10.1109/TIE.2006.874280

    Article  Google Scholar 

  • Uesaka K, Kawamata M (2003) Evolutionary synthesis of digital filter structures using genetic programming. IEEE Trans Circuits Syst II: Analog Digital Signal Process 50:977–983. doi:10.1109/TCSII.2003.820240

    Article  Google Scholar 

  • Vasicek Z, Bidlo M, Sekanina L (2013) Evolution of efficient real-time non-linear image filters for fpgas. Soft Comput 17:2163–2180. doi:10.1007/s00500-013-1040-8

    Article  Google Scholar 

  • Vasundhara, Mandal D, Kar R, Ghoshal SP (2014) Digital FIR filter design using fitness based hybrid adaptive differential evolution with particle swarm optimization. Nat Comput 13:55–64. doi:10.1007/s11047-013-9381-x

  • Wang Y, Li B, Chen Y (2011) Digital IIR filter design using multi-objective optimization evolutionary algorithm. Appl Soft Comput 11:1851–1857. doi:10.1016/j.asoc.2010.05.034

    Article  Google Scholar 

  • Wang Y, Li B, Weise T (2013) Two-stage ensemble memetic algorithm: function optimization and digital IIR filter design. Inf Sci 220:408–424. doi:10.1016/j.ins.2012.07.041

    Article  Google Scholar 

  • Xiao H, Shao Y, Zhou X, Wilcox SJ (2014) An improved simplex-based adaptive evolutionary digital filter and its application for fault detection of rolling element bearings. Measurement 55:25–32. doi:10.1016/j.measurement.2014.04.027

    Article  Google Scholar 

  • Zhang L, Morel F, Hu-Guo C, Hu Y (2014) A low-power and small-area column-level ADC for high frame-rate CMOS pixel sensor. Nuclear Instrum Methods Phys Res A 752:15–19. doi:10.1016/j.nima.2014.03.034

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Foundation of Education Department, Henan Province, China (Grant Nos. 15A510018, 15A510019). This study was also funded by the Foundation of Technology Department, Henan Province, China (Grant No. 142102210629).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijia Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Chen, L., He, J. et al. A novel evolutionary method of structure-diversified digital filter design and its experimental study. Soft Comput 22, 2381–2401 (2018). https://doi.org/10.1007/s00500-017-2502-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-017-2502-1

Keywords

Navigation