Soft Computing

, Volume 21, Issue 17, pp 4939–4952 | Cite as

A simulation-based quantitative analysis on the topological heritability of Dandelion-encoded meta-heuristics for tree optimization problems

  • Cristina Perfecto
  • Miren Nekane Bilbao
  • Javier Del Ser
  • Armando Ferro


The solutions to many optimization paradigms arising from different application domains can be modeled as a tree graph, in such a way that nodes represent the variables to be optimized and edges evince topological relationships between such variables. In these problems the goal is to infer an optimal tree graph interconnecting all nodes under a measure of topological fitness, for which a wide portfolio of exact and approximative solvers have hitherto been reported in the related literature. In this context a research line of interest in the last few years has been focused on the derivation of solution encoding strategies suited to deal with the topological constraints imposed by tree graph configurations, particularly when the encoded solution undergoes typical operators from Evolutionary Computation. Almost all contributions within this research area focus on the use of standard crossover and mutation operators from Genetic Algorithms onto the graph topology beneath encoded individuals. However, the pace at which new evolutionary operators have emerged from the community has grown much sharply during the last decade. This manuscript elaborates on the topological heritability of the so-called Dandelion tree encoding approach under non-conventional operators. This experimental application-agnostic-based study gravitates on the topological transmission of Dandelion-encoded solutions under a certain class of multi-parent crossover operators that lie at the core of the family of \((\mu +1)\) evolution strategies and in particular, the so-called Harmony Search algorithm. Metrics to define topological heritability and respect will be defined and evaluated over a number of convergence scenarios for the population of the algorithm, from which insightful conclusions will be drawn in terms of the preserved structural properties of the newly produced solutions with respect to the initial Dandelion-encoded population.


Dandelion codes Tree optimization Genetic algorithms Evolution strategies Multi-parent crossover 



This work has been funded in part by the Basque Government under the ELKARTEK program (BID3A Project, Grant Ref. 123456).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest regarding this work.


  1. Bazlamaç FC, Hindi SK (2001) Minimum-weight spanning tree algorithms: a survey and empirical study. Comput Oper Res 28(8):767–785. doi: 10.1016/S0305-0548(00)00007-1 MathSciNetCrossRefMATHGoogle Scholar
  2. Bäck T, Hoffmeister F, Schwefel HP (1991) A survey of evolution strategies. In: Proceedings of the fourth international conference on genetic algorithms. Morgan KaufmannGoogle Scholar
  3. Bäck T (1996) Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press, OxfordMATHGoogle Scholar
  4. Borůvka O (1926) On a minimal problem. Práce Moravské Pridovedecké Spolecnosti 3:37–58Google Scholar
  5. Caminiti S, Petreschi R (2005) String coding of trees with locality and heritability. Lect Notes Comput Sci 3595:251–262. doi: 10.1007/11533719_27 MathSciNetCrossRefMATHGoogle Scholar
  6. Caminiti S, Petreschi R (2009) Parallel algorithms for Dandelion-Like codes. Lect Notes Comput Sci 5544:611–620. doi: 10.1007/978-3-642-01970-8_60 CrossRefMATHGoogle Scholar
  7. Djauhari MA, Gan SL (2015) Optimality problem of network topology in stocks market analysis. Physica A 419:108–114. doi: 10.1016/j.physa.2014.09.060 CrossRefGoogle Scholar
  8. Durrett R (2010) Some features of the spread of epidemics and information on a random graph. Proc Natl Acad Sci USA 107(10):4491–4498. doi: 10.1073/pnas.0914402107 CrossRefGoogle Scholar
  9. Eğecioğlu Ö, Remmel JB (1986) Bijections for Cayley trees, spanning trees, and their q-analogues. J Comb Theory A 42(1):15–30. doi: 10.1016/0097-3165(86)90004-X MathSciNetCrossRefMATHGoogle Scholar
  10. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68. doi: 10.1177/003754970107600201 CrossRefGoogle Scholar
  11. Gen M, Cheng R (2000) Genetic algorithms and engineering optimization. Wiley, HobokenGoogle Scholar
  12. Gottlieb J, Julstrom BA, Raidl GR, Rothlauf F (2001) Prüfer numbers: a poor representation of spanning trees for evolutionary search. In: Spector L (ed) GECCO’01 Proceedings of the 3rd annual conference on genetic and evolutionary computation. Morgan Kaufmann Publishers Inc, San Francisco, pp 343–350Google Scholar
  13. Kruskal JB (1956) On the shortest spanning subtree of a graph and the travelling salesman problem. Proc Am Math Soc 7:48–50. doi: 10.1090/S0002-9939-1956-0078686-7 CrossRefMATHGoogle Scholar
  14. Landa-Torres I, Manjarres D, Gil-López S et al (2012) A preliminary approach to near-optimal multi-hop capacitated network design using grouping-Dandelion encoded heuristics. In: International workshop on computer aided modeling and design of communication links and networks (CAMAD), Proceedings of IEEE 17th IEEE, Barcelona, pp 85–89. doi: 10.1109/CAMAD.2012.6335385
  15. Palmer C, Kershenbaum A (1994) Representing trees in genetic algorithms. World congress on computational intelligence. Proceedings of the First IEEE. IEEE, Orlando FL, pp 379–384Google Scholar
  16. Paulden T, Smith DK (2006) From the Dandelion code to the rainbow code: a class of bijective spanning tree representations with linear complexity and bounded locality. IEEE Trans Evol Comput 10(2):108–123. doi: 10.1109/TEVC.2006.871249 CrossRefGoogle Scholar
  17. Paulden T, Smith DK (2006b) Recent advances in the study of the Dandelion code, happy code, and blob code spanning tree representations. In: International conference on evolutionary computation, Proceedings of IEEE. IEEE, Vancouver BC, pp 2111–2118. doi: 10.1109/CEC.2006.1688567
  18. Perez-Bellido AM, Salcedo-Sanz S, Ortiz-Garcia EG et al (2009) A Dandelion-encoded evolutionary algorithm for the delay-constrained capacitated minimum spanning tree problem. Comput Commun 32(1):154–158. doi: 10.1016/j.comcom.2008.09.030
  19. Perfecto C, Bilbao MN, Del Ser J et al (2015) On the heritability of Dandelion-encoded harmony search heuristics for tree optimization problems. In: International symposium on innovations in intelligent systems and applications, Proceedings of IEEE. IEEE, Madrid, pp 1–8. doi: 10.1109/INISTA.2015.7276763
  20. Perfecto C, Bilbao MN, Del Ser J et al (2016) Dandelion-encoded harmony search heuristics for opportunistic traffic offloading in synthetically modeled mobile networks. In: Kim JH (ed) Harmony search algorithm. Advances in intelligent systems and computing, vol 382. Springer, Berlin, pp 133–145. doi: 10.1007/978-3-662-47926-1_14
  21. Picciotto S (1999) How to encode a tree. Dissertation, University of CaliforniaGoogle Scholar
  22. Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401CrossRefGoogle Scholar
  23. Rechenberg I (1973) Evolutionsstrategie optimierung technischer systeme nach prinzipien der biologischen evolution. Frommann-Holzboog, Stuttgart. doi: 10.1002/fedr.19750860506 Google Scholar
  24. Rothlauf F (2002) Representations for genetic and evolutionary algorithms. Springer, BerlinCrossRefMATHGoogle Scholar
  25. Sabattin J, Bolton C, Arias M, Parada V (2012) Evolutionary optimization of electric power distribution using the Dandelion code. J Electr Comp Eng. doi: 10.1155/2012/738409 Google Scholar
  26. Salcedo-Sanz S, Naldi M, Perez-Bellido AM et al (2010) Evolutionary optimization of service times in interactive voice response systems. IEEE Trans Evol Comput 14(4):602–617. doi: 10.1109/TEVC.2009.2039142 CrossRefGoogle Scholar
  27. Salcedo-Sanz S, Del Ser J, Landa-Torres I et al (2014) The coral reefs optimization algorithm: a novel metaheuristic for efficiently solving optimization problems. Sci World J. doi: 10.1155/2014/739768 Google Scholar
  28. Thompson E, Paulden T, Smith DK (2007) The Dandelion code: a new coding of spanning trees for genetic algorithms. IEEE Trans Evol Comput 11(1):91–100. doi: 10.1109/TEVC.2006.880730 CrossRefGoogle Scholar
  29. Türetken E, González G, Blum C et al (2011) Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics 9(2–3):279–302. doi: 10.1007/s12021-011-9122-1 CrossRefGoogle Scholar
  30. Weyland D (2010) A rigorous analysis of the harmony search algorithm: how the research community can be misled by a methodology. Int J Appl Metaheuristic Comput 1(2):50–60. doi: 10.4018/jamc.2010040104 CrossRefGoogle Scholar
  31. Weyland D (2015) A critical analysis of the harmony search algorithm–how not to solve sudoku. Oper Res Perspect 2:97–105. doi: 10.1016/j.orp.2015.04.001 MathSciNetCrossRefGoogle Scholar
  32. Yang XS, Deb S, Fong S et al (2016) From swarm intelligence to metaheuristics: nature-inspired optimization algorithms. Computer 49(9):52–59. doi: 10.1109/MC.2016.292 CrossRefGoogle Scholar
  33. Yang XS (2008) Nature-inspired metaheuristic algorithms. Luniver Press, FromeGoogle Scholar
  34. Zhang L, Lampe M, Wang Z (2011) Topology Design of Industrial Ethernet Networks using a Multi-Objective Genetic Algorithm. In: Communications and Networking in China (CHINACOM), 6th International ICST Conference on. IEEE, Harbin, pp 735–741. doi: 10.1109/ChinaCom.2011.6158251

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department Communications EngineeringUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.TECNALIADerioSpain
  3. 3.Basque Center for Applied Mathematics (BCAM)University of the Basque Country (UPV/EHU)BilbaoSpain

Personalised recommendations