Advertisement

Soft Computing

, Volume 22, Issue 4, pp 1263–1285 | Cite as

Self-adaptive differential evolution algorithm with hybrid mutation operator for parameters identification of PMSM

  • Chuan Wang
  • Yancheng Liu
  • Xiaoling Liang
  • Haohao Guo
  • Yang Chen
  • Youtao Zhao
Methodologies and Application

Abstract

Parameters identification of permanent magnetic synchronous motor (PMSM), which significantly influences the control performance of the drive system, is an important and challenging task of power electronic system. The problem requires both high solution quality and fast convergence speed due to the constraints of hardware. This paper presents a self-adaptive differential evolution algorithm with hybrid mutation operator (SHDE) for parameters identification problem. In this method, a novel mutation operator, called “current-to-archive-best,” is developed by mixing the best solutions randomly selected from archive set and current population. Thus, the algorithm could use the best searching memories so far to generate promising solutions, yielding a faster evolving procedure. Besides, the corresponding control parameters of SHDE are also self-adapted without tedious trial-and-error progress to get appropriate values. Moreover, the parameters estimation program is inserted into the PMSM simulation that is solved by using Newton–Raphson method without any pre-assumption and simplification. This framework, which may be used under any working conditions with large disturbance, is different from other publications, resulting in wider applications. The proposed method applied to parameters identification of PMSM is evaluated on a PMSM drive system with two different operations. The comprehensive results and statistical analyses, compared with other state-of-the-art algorithms, show that SHDE could find high-quality solutions with higher convergence speed and probability.

Keywords

Parameter identification Differential evolution (DE) Neutral selection operator Permanent magnet synchronous machine Ranking-based mutation operators 

List of symbols

\(A_{\mathrm{v}}\)

Amplification of speed loop after PI controller

\(A_{\mathrm{i}}\)

Amplification of current loop after PI controller

Cr

Crossover rate

D

Optimization problem dimension

F

Scaling factor

G

Generation index of DE algorithm

J

Inertia coefficient \((\hbox {kg}\,\hbox {m}^{2}\))

\(L_{d}\)

d-Axis inductance (H)

\(L_{d}^\mathrm{min}\)

Lower limit of d-axis inductance (H)

\(L_{d}^\mathrm{max}\)

Upper limit of d-axis inductance (H)

\(L_{q}\)

q-Axis inductance (H)

\(L_{q}^\mathrm{min}\)

Lower limit of q-axis inductance (H)

\(L_{q}^\mathrm{max}\)

Upper limit of q-axis inductance (H)

\(R_{\mathrm{s}}\)

Stator resistance (\(\Omega )\)

\(R_{\mathrm{s}}^\mathrm{min}\)

Lower limit of stator resistance \((\Omega )\)

\(R_{\mathrm{s}}^\mathrm{max}\)

Upper limit of stator resistance \((\Omega )\)

\(T_{\mathrm{e}}\)

Electromagnetic torque (\(\hbox {N}\,\hbox {m}\))

\(T_{\mathrm{l}}\)

Load torque (\(\hbox {N}\,\hbox {m}\))

\(\mathbf{U}_{i}\)

Trail vector for ith individual

\(\mathbf{V}_{i}\)

Mutation vector for ith individual

\(\mathbf{X}_{i}\)

Target vector, i.e., ith individual

\(i_{d}, i_{q}\)

dq-Axis current (A)

\(i_{d\_\mathrm{ref}}, i_{q\_\mathrm{ref}}\)

Reference dq-axis current (A)

h

Step size (s)

k

Iteration index of Newton–Raphson method

\(k_{\max }\)

Max iteration number of Newton–Raphson method

p

Number of pole pairs

ps

Population size of DE algorithm

t

Sampling time index of PMSM simulation

\(v_{d}, v_{q}\)

dq-Axis voltage (V)

\(v_{a}, v_{b}, v_{c}\)

abc-Axis voltage (V)

\(\varepsilon \)

Small positive constant of termination criteria for Newton–Raphson method

\(\theta \)

Rotor position (rad)

\({\psi }_{\mathrm{r}}\)

Rotor flux linkage (Wb)

\({\psi }_{\mathrm{r}}^\mathrm{min}\)

Lower limit of rotor flux linkage (Wb)

\({\psi }_{\mathrm{r}}^\mathrm{max}\)

Upper limit of rotor flux linkage (Wb)

\({\omega }_{\mathrm{e}}\)

Electrical angular speed (rad/s)

\({\omega }_{\mathrm{m}}\)

Mechanical angular speed (rad/s)

\({\omega }_{m\_\mathrm{ref}}\)

Reference mechanical angular speed (rad/s)

Notes

Acknowledgments

The authors would like to thank Natural Science Foundation of Liaoning Province, China, under Contract No. 2014025006; Education Department General Project of Liaoning Province, China, under Contract No. L2014209; Fundamental Research Funds for the Central Universities under Contract No. 3132016011 for financially supporting this research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Abbass HA (2002) The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 congress on evolutionary computation (CEC ’02), vol 1, pp 831–836Google Scholar
  2. Abbasbandy S (2003) Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl Math Comput 145(2–3):887–893MathSciNetzbMATHGoogle Scholar
  3. Alpert BK (1999) Hybrid Gauss-trapezoidal quadrature rules. SIAM J Sci Comput 20(5):1551–1584MathSciNetCrossRefzbMATHGoogle Scholar
  4. Bolognani S, Tubiana L, Zigliotto M (2003) Extended Kalman filter tuning in sensorless PMSM drives. IEEE Trans Ind Appl 39(6):1741–1747CrossRefGoogle Scholar
  5. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006a) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657CrossRefGoogle Scholar
  6. Brest J, Zumer V, Maucec MS (2006b) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE congress on evolutionary computation, vols 1–6, pp 215–222Google Scholar
  7. Brest J, Boskovic B, Greiner S, Zumer V, Maucec MS (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7):617–629CrossRefzbMATHGoogle Scholar
  8. Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29(3):261–267CrossRefGoogle Scholar
  9. Crisfield MA (1984) Accelerating and damping the modified Newton–Raphson method. Comput Struct 18(3):395–407CrossRefzbMATHGoogle Scholar
  10. Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31CrossRefGoogle Scholar
  11. Das S, Konar A, Chakraborty UK (2005) Two improved differential evolution schemes for faster global search. In: Genetic and evolutionary computation conference (GECCO 2005), vols 1 and 2, pp 991–998Google Scholar
  12. Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30CrossRefGoogle Scholar
  13. Demeure CJ, Mullis CT (1990) A Newton–Raphson method for moving-average spectral factorization using the Euclid algorithm. IEEE Trans Acoust Speech Signal Process 38(10):1697–1709MathSciNetCrossRefzbMATHGoogle Scholar
  14. Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18CrossRefGoogle Scholar
  15. Dragoi E-N, Dafinescu V (2016) Parameter control and hybridization techniques in differential evolution: a survey. Artif Intell Rev 45(4):447–470CrossRefGoogle Scholar
  16. Durgun I, Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Mater Test 54(3):185–188CrossRefGoogle Scholar
  17. Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141CrossRefGoogle Scholar
  18. El-Hawary ME, Landrigan JK (1982) Optimum operation of fixed-head hydro-thermal electric power systems: Powell’s hybrid method versus Newton–Raphson method. IEEE Trans Power Appar Syst 101(3):547–554CrossRefGoogle Scholar
  19. El-Sousy FFM (2011) Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive. IET Electr Power Appl 5(1):113–132CrossRefGoogle Scholar
  20. Emara HM, Elshamy W, Bahgat A (2008) Parameter identification of induction motor using modified particle swarm optimization algorithm. In: IEEE international symposium on industrial electronics, pp 841–847Google Scholar
  21. Garcia S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694zbMATHGoogle Scholar
  22. Huang VL, Qin AK, Suganthan PN (2006) Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: IEEE congress on evolutionary computation, vols 1–6, pp 17–24Google Scholar
  23. Hwang CC, Cho YH (2001) Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. In: 8th joint magnetism and magnetic materials-international magnetics conference (MMM-INTERMAG), January 7–11, vol 37, pp 3021–3024Google Scholar
  24. Ichikawa S, Tomita M, Doki S, Okuma S (2006) Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory. IEEE Trans Ind Electron 53(2):363–372CrossRefGoogle Scholar
  25. Jabbar MA, Dong J, Liu Z (2004) Determination of machine parameters for internal permanent magnet synchronous motors. In: 2nd international conference (Conf. Publ. No. 498) on power electronics, machines and drives (PEMD 2004), vol 2, pp 805–810Google Scholar
  26. Jong-Wook K, Sang Woo K (2005) Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS). IEEE Trans Energy Convers 20(1):16–24CrossRefGoogle Scholar
  27. Kampisios K, Zanchetta P, Gerada C, Trentin A, Jasim O (2008) Induction motor parameters identification using genetic algorithms for varying flux levels. In: 13th international power electronics and motion control conference, vols 1–5, pp 887–892Google Scholar
  28. Kan L, Ziqiang Z, Jing Z, Qiao Z, Anwen S (2010) Multi-parameter estimation of non-salient pole permanent magnet synchronous machines by using evolutionary algorithms. In: IEEE 5th international conference on bio-inspired computing: theories and applications, pp 766–774Google Scholar
  29. Kao R (1974) A comparison of Newton–Raphson methods and incremental procedures for geometrically nonlinear analysis. Comput Struct 4(5):1091–1097CrossRefGoogle Scholar
  30. Kiani M, Yildiz AR (2015) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng. doi: 10.1007/s11831-015-9155-y
  31. Li XD (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169CrossRefGoogle Scholar
  32. Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295CrossRefGoogle Scholar
  33. Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462CrossRefzbMATHGoogle Scholar
  34. Liu L, Cartes DA (2007) Synchronisation based adaptive parameter identification for permanent magnet synchronous motors. IET Control Theory Appl 1(4):1015–1022CrossRefGoogle Scholar
  35. Liu W, Liu L, Cartes DA (2008) Efforts on real-time implementation of PSO based PMSM parameter identification. In: IEEE Power and Energy Society (PES) general meeting: conversion and delivery of electrical energy in the 21st century, July 20–24Google Scholar
  36. Liu K, Zhang Q, Chen J, Zhu ZQ, Zhang J (2011) Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Trans Ind Electron 58(5):1776–1788CrossRefGoogle Scholar
  37. Liu Z-H, Zhang J, Zhou S-W, Li X-H, Liu K (2013) Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM. IEEE Trans Cybern 43(6):1921–1935CrossRefGoogle Scholar
  38. Mohamed YA-RI, El-Saadany EF (2008) A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems. IEEE Trans Energy Convers 23(1):92–100CrossRefGoogle Scholar
  39. Morimoto S, Sanada M, Takeda Y (2006) Mechanical sensorless drives of IPMSM with online parameter identification. IEEE Trans Ind Appl 42(5):1241–1248CrossRefGoogle Scholar
  40. Nahid-Mobarakeh B, Meibody-Tabar F, Sargos F-M (2004) Mechanical sensorless control of PMSM with online estimation of stator resistance. IEEE Trans Ind Appl 40(2):457–471CrossRefGoogle Scholar
  41. Nogueira Lima AM, Jacobina CB, de Souza Filho EB (1997) Nonlinear parameter estimation of steady-state induction machine models. IEEE Trans Ind Electron 44(3):390–397CrossRefGoogle Scholar
  42. Ozturk N, Yildiz AR, Kaya N, Ozturk F (2006) Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE. Concurr Eng Res Appl 14(1):5–16CrossRefGoogle Scholar
  43. Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE congress on evolutionary computation, vols 1–3, pp 1785–1791Google Scholar
  44. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417CrossRefGoogle Scholar
  45. Rahman KM, Hiti S (2005) Identification of machine parameters of a synchronous motor. IEEE Trans Ind Appl 41(2):557–565CrossRefGoogle Scholar
  46. Raie A, Rashtchi V (2002) Accurate identification of parameters, in winding function model of induction motor, using genetic algorithm. In: Proceedings of the 41st SICE annual conference (SICE 2002), vol 4, pp 2430–2434Google Scholar
  47. Rashed M, MacConnell PFA, Stronach AF, Acarnley P (2007) Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Trans Ind Electron 54(3):1664–1675CrossRefGoogle Scholar
  48. Rice SO (1973) Efficient evaluation of integrals of analytic functions by the trapezoidal rule. Bell Syst Tech J 52(5):707–722MathSciNetCrossRefzbMATHGoogle Scholar
  49. Schaible U, Szabados B (1999) Dynamic motor parameter identification for high speed flux weakening operation of brushless permanent magnet synchronous machines. IEEE Trans Energy Convers 14(3):486–492CrossRefGoogle Scholar
  50. Shi Y, Sun K, Huang L, Li Y (2012) Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control. IEEE Trans Ind Electron 59(11):4169–4178CrossRefGoogle Scholar
  51. Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: IEEE congress on evolutionary computation (CEC 2014), July 6–11, pp 1658–1665Google Scholar
  52. Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput 10(8):673–686CrossRefGoogle Scholar
  53. Underwood SJ, Husain I (2010) Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans Ind Electron 57(7):2435–2443CrossRefGoogle Scholar
  54. Valdenebro LR, Bim E (1999) A genetic algorithms approach for adaptive field oriented control of induction motor drives. In: Proceedings of the IEEE international electric machines and drives conference (IEMDC ’99), pp 643–645Google Scholar
  55. Wang C, Liu YC, Zhao YT (2013a) Application of dynamic neighborhood small population particle swarm optimization for reconfiguration of shipboard power system. Eng Appl Artif Intell 26(4):1255–1262CrossRefGoogle Scholar
  56. Wang H, Rahnamayan S, Sun H, Omran MGH (2013b) Gaussian Bare-Bones differential evolution. IEEE Trans Cybern 43(2):634–647CrossRefGoogle Scholar
  57. Wang H, Sun H, Li C, Rahnamayan S, Pan JS (2013c) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135MathSciNetCrossRefGoogle Scholar
  58. Wang C, Liu YC, Zhao YT, Chen Y (2014) A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization. Eng Appl Artif Intell 32:63–75CrossRefGoogle Scholar
  59. Yildiz AR (2008) Optimal structural design of vehicle components using topology design and optimization. Mater Test 50(4):224–228CrossRefGoogle Scholar
  60. Yildiz AR (2013a) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333CrossRefGoogle Scholar
  61. Yildiz AR (2013b) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61Google Scholar
  62. Yildiz AR (2013c) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput J 13(3):1433–1439CrossRefGoogle Scholar
  63. Yildiz AR (2013d) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput J 13(3):1561–1566CrossRefGoogle Scholar
  64. Yildiz AR (2013e) Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int J Adv Manuf Technol 66(9–12):1319–1326CrossRefGoogle Scholar
  65. Yildiz AR, Saitou K (2011) Topology synthesis of multicomponent structural assemblies in continuum domains. J Mech Des Trans ASME 133 (1):788–796Google Scholar
  66. Yildiz AR, Kaya N, Ozturk F, Alankus O (2004) Optimal design of vehicle components using topology design and optimisation. Int J Veh Des 34(4):387–398CrossRefGoogle Scholar
  67. Yildiz BS, Lekesiz H, Yildiz AR (2016a) Structural design of vehicle components using gravitational search and charged system search algorithms. Mater Test 58(1):79–81CrossRefGoogle Scholar
  68. Yildiz AR, Kurtulus E, Demirci E, Yildiz BS, Karagoz S (2016b) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm. Mater Test 58(1):75–78CrossRefGoogle Scholar
  69. Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381CrossRefGoogle Scholar
  70. Zhang JQ, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958CrossRefGoogle Scholar
  71. Zheng P, Zhao J, Liu R, Tong C, Wu Q (2010) Magnetic characteristics investigation of an axial-axial flux compound-structure PMSM used for HEVs. IEEE Trans Magn 46:2191–2194CrossRefGoogle Scholar
  72. Zhu ZQ, Zhu X, Sun PD, Howe D (2007) Estimation of winding resistance and PM flux-linkage in brushless ac machines by reduced-order extended Kalman filter. In: IEEE international conference on networking, sensing and control, pp 740–745Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Chuan Wang
    • 1
  • Yancheng Liu
    • 1
  • Xiaoling Liang
    • 1
  • Haohao Guo
    • 1
  • Yang Chen
    • 1
  • Youtao Zhao
    • 1
  1. 1.Marine Engineering CollegeDalian Maritime UniversityDalianPeople’s Republic of China

Personalised recommendations