Soft Computing

, Volume 21, Issue 17, pp 4859–4872 | Cite as

Multi-stage evolution of single- and multi-objective MCLP

Successive placement of charging stations
  • Helge Spieker
  • Alexander Hagg
  • Adam Gaier
  • Stefanie Meilinger
  • Alexander Asteroth
Focus

Abstract

Maximal covering location problems have efficiently been solved using evolutionary computation. The multi-stage placement of charging stations for electric cars is an instance of this problem which is addressed in this study. It is particularly challenging, because a final solution is constructed in multiple steps, stations cannot be relocated easily and intermediate solutions should be optimal with respect to certain objectives. This paper is an extended version of work published in Spieker et al. (Innovations in intelligent systems and applications (INISTA), 2015 international symposium on. IEEE, pp 1–7, 2015). In this work, it was shown that through problem decomposition, an incremental genetic algorithm benefits from having multiple intermediate stages. On the other hand, a decremental strategy does not profit from reduced computational complexity. We extend our previous work by including multi-objective optimization of multi-stage charging station placement, allowing us to not only optimize toward (weighted) demand location coverage, but also to include a second objective, taking into account traffic density. It is shown that the reachable part of the full Pareto front at each stage is bound by the solution that was chosen from the respective previous front. By careful choice of the selection strategy, a particular focus can be set. This can be exploited to comply with concrete implementation goals and to adjust the evolved strategy to both static and dynamic changes in requirements.

Keywords

Genetic algorithm Optimization Maximal covering location problem Multi-stage Single-objective Multi-objective Electric mobility 

References

  1. Albareda-Sambola M, Fernández E, Hinojosa Y, Puerto J (2009) The multi-period incremental service facility location problem. Comput Oper Res 36(5):1356–1375CrossRefMATHGoogle Scholar
  2. Attea BA, Khalil EA, Cosar A (2014) Multi-objective evolutionary routing protocol for efficient coverage in mobile sensor networks. Soft Comput. doi:10.1007/s00500-014-1462-y Google Scholar
  3. Badri MA, Mortagy AK, Alsayed CA (1998) A multi-objective model for locating fire stations. Eur J Oper Res 110(2):243–260. doi:10.1016/S0377-2217(97)00247-6 CrossRefMATHGoogle Scholar
  4. Berman O, Krass D (2002) The generalized maximal covering location problem. Comput Oper Res 29(6):563–581MathSciNetCrossRefMATHGoogle Scholar
  5. Berman O, Drezner Z, Krass D (2010) Generalized coverage: new developments in covering location models. Comput Oper Res 37(10):1675–1687MathSciNetCrossRefMATHGoogle Scholar
  6. BMVI (2011) Szenarien zum Infrastrukturaufbau für Elektromobilität, Technical report. Bundesministerium für Verkehr und digitale InfrastrukturGoogle Scholar
  7. BMVI (2014) Öffentliche Ladeinfrastruktur für Städte. Kommunen und Versorger, Technical report. Bundesministerium für Verkehr und digitale InfrastrukturGoogle Scholar
  8. Canel C, Khumawala BM, Law J, Loh A (2001) An algorithm for the capacitated, multi-commodity multi-period facility location problem. Comput Oper Res 28(5):411–427MathSciNetCrossRefMATHGoogle Scholar
  9. Chung SH (2012) Multi-period planning for electric-car charging station locations: a case of Korean expressways. Eur J Oper Res 242(2):1–31Google Scholar
  10. Church R, ReVelle C (1974) The maximal covering location problem. Pap Reg Sci Assoc 32(1):101–118CrossRefGoogle Scholar
  11. Church RL, Stoms DM, Davis FW (1996) Reserve selection as a maximal covering location problem. Biol Conserv 76(2):105–112CrossRefGoogle Scholar
  12. Deb K, Wiley J (2006) Multi-objective optimization using evolutionary algorithms. In: 25th international congress of the aeronautical sciences. doi:10.5897/AJB11.410
  13. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017 CrossRefGoogle Scholar
  14. Elektromobilität NP (2012) Ladeinfrastruktur bedarfsgerecht aufbauen, Technical report. Nationale Plattform ElektromobilitätGoogle Scholar
  15. Farahani RZ, Asgari N, Heidari N, Hosseininia M, Goh M (2012) Covering problems in facility location: a review. Comput Ind Eng 62(1):368–407CrossRefGoogle Scholar
  16. Hess A, Malandrino F, Reinhardt MB, Casetti C, Hummel KA, Barceló-Ordinas JM (2012) Optimal deployment of charging stations for electric vehicular networks. In: Proceedings of the first workshop on Urban networking—UrbaNe ’12, p 1Google Scholar
  17. Holland JH (1975) Adaptation in natural and artificial systems. MIT Press, Ann ArborGoogle Scholar
  18. Infas Institut für angewandte Sozialwissenschaft Gmbh (2009) Alltagsverkehr in Bonn und dem Rhein-Sieg-KreisGoogle Scholar
  19. Jin M, Shi R, Zhang N, Li Y (2013) Study on multi-level layout planning of electric vehicle charging stations based on an improved genetic algorithm. Int J Smart Grid Clean Energy 2(2):277–282CrossRefGoogle Scholar
  20. Lim S, Kuby M (2010) Heuristic algorithms for siting alternative-fuel stations using the flow-refueling location model. Eur J Oper Res 204(1):51–61CrossRefMATHGoogle Scholar
  21. MBWSV-NRW (2013) Mobilität in Nordrhein-Westfalen—Daten und Fakten, Technical report. Ministerium für Bauen, Wohnen, Stadtentwicklung und Verkehr des Landes Nordrhein-WestfalenGoogle Scholar
  22. Reininger P, Iksal S, Caminada A, Korczak J (1999) Multi-stage optimization for mobile radio network planning. In: Vehicular technology conference, 1999 IEEE 49th, vol 3, pp 2034–2038Google Scholar
  23. Spieker H, Hagg A, Asteroth A, Meilinger S, Jacobs V, Oslislo A (2015) Successive evolution of charging station placement. In: Innovations in intelligent systems and applications (INISTA), 2015 international symposium on. IEEE, pp 1–7Google Scholar
  24. Zarandi MF, Davari S, Sisakht SH (2011) The large scale maximal covering location problem. Sci Iran 18(6):1564–1570CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Helge Spieker
    • 1
  • Alexander Hagg
    • 1
  • Adam Gaier
    • 1
  • Stefanie Meilinger
    • 1
  • Alexander Asteroth
    • 1
  1. 1.University of Applied Sciences Bonn-Rhein-SiegSankt AugustinGermany

Personalised recommendations