A generalized partition refinement algorithm, instantiated to language equivalence checking for weighted automata
- 72 Downloads
- 2 Citations
Abstract
We present a generic algorithm, generalizing partition refinement, for deciding behavioural equivalences for various types of transition systems. In order to achieve this generality, we work with coalgebra, which offers a general framework for modelling different types of state-based systems. The underlying idea of the algorithm is to work on the so-called final chain and to factor out redundant information. If the algorithm terminates, the result of the construction is a representative of the given coalgebra that is not necessarily unique and that allows to precisely answer questions about behavioural equivalence. We instantiate the algorithm to the particularly interesting case of weighted automata over semirings in order to obtain a procedure for checking language equivalence for a large number of semirings. We use fuzzy automata with weights from an l-monoid as a case study.
Notes
Acknowledgments
We would like to thank Alexandra Silva, Filippo Bonchi, Jacques Sakarovitch and Marcello Bonsangue for several interesting discussions on this topic. Furthermore, we are very grateful to Manfred Droste, Zoltán Ésik and the anonymous reviewers for their helpful comments on this paper. In addition, we would like to thank Christina Mika for her work on the implementation.
Compliance with ethical standards
Conflicts of interest
The authors confirm that there are no known conflicts of interest associated with this publication.
References
- Adámek J, Rosický J (1994) Locally presentable and accessible categories, volume 189 of London Mathematical Society Lecture Note Series. Cambridge University Press, CambridgeGoogle Scholar
- Adámek J, Koubek V (1995) On the greatest fixed point of a set functor. Theor Comput Sci 150:57–75MathSciNetCrossRefMATHGoogle Scholar
- Adámek J, Herrlich H, Strecker GE (1990) Abstract and concrete categories—the joy of cats. Wiley, New YorkMATHGoogle Scholar
- Adámek J, Bonchi F, Hülsbusch M, König B, Milius S, Silva A (2012) A coalgebraic perspective on minimization and determinization. In: Proceedings of FOSSACS ’12, LNCS/ARCoSS 7213. Springer, pp 58–73Google Scholar
- Almagor S, Boker U, Kupferman O (2011) What’s decidable about weighted automata? In: Proceedings of ATVA ’11, LNCS 6996. Springer, pp 482–491Google Scholar
- Baier C (1996) Polynomial time algorithms for testing probabilistic bisimulation and simulation. In: Proceedings of CAV ’96, LNCS 1102. Springer, pp 50–61Google Scholar
- Béal M-P, Lombardy S, Sakarovitch J (2005) On the equivalence of \(\mathbb{Z}\)-automata. In: Proceedings of ICALP ’05, LNCS 3580. Springer, pp 397–409Google Scholar
- Béal M-P, Lombardy S, Sakarovitch J (2006) Conjugacy and equivalence of weighted automata and functional transducers. In: Proceedings of CSR ’06, LNCS 3967. Springer, pp 58–69Google Scholar
- Berstel J, Reutenauer C (1988) Rational series and their languages. Springer, BerlinCrossRefMATHGoogle Scholar
- Bloom SL, Ésik Z (1993) Iteration theories: the equational logic of iterative processes. In: EATCS monographs on theoretical computer science. SpringerGoogle Scholar
- Bloom SL, Ésik Z (2009) Axiomatizing rational power series over natural numbers. Inf Comput 207(7):793–811MathSciNetCrossRefMATHGoogle Scholar
- Blyth TS, Janowitz MF (1972) Residuation theory. Pergamon Press, OxfordMATHGoogle Scholar
- Bonchi F, Petrisan D, Pous D, Rot J (2014) Coinduction up to in a fibrational setting. CoRR abs/1401.6675Google Scholar
- Bonsangue M, Milius S, Silva A (2013) Sound and complete axiomatizations of coalgebraic language equivalence. ACM Trans Comput Log 14(1):7. doi: 10.1145/2422085.2422092
- Boreale M (2009) Weighted bisimulation in linear algebraic form. In: Proceedings of CONCUR ’09, LNCS 5710. Springer, pp 163–177Google Scholar
- Cuninghame-Green RA (1979) Minimax algebra. Lecture notes in economics and mathematical systems. SpringerGoogle Scholar
- Droste M, Kuske D (2013) Weighted automata. In: Pin J-E (ed) Automata: from mathematics to applications. European Mathematical Society, Switzerland (to appear)Google Scholar
- Droste M, Kuich W, Vogler H (eds) (2009) Handbook of weighted automata. Springer, BerlinMATHGoogle Scholar
- Eisner J (2003) Simpler and more general minimization for weighted finite-state automata. In: Proceedings of HLT-NAACL ’03. Association for Computational Linguistics, vol 1, pp 64–71Google Scholar
- Ésik Z (2011) Multi-linear iterative k-\(\varSigma \)-semialgebras. ENTCS 276:159–170MathSciNetMATHGoogle Scholar
- Ésik Z, Kuich W (2001) A generalization of Kozen’s axiomatization of the equational theory of the regular sets. In: Words, semigroups, and transductions—Festschrift in Honor of Gabriel Thierrin, pp 99–114Google Scholar
- Ésik Z, Maletti A (2010) Simulation vs. equivalence. In: Proceedings of FCS ’10. CSREA Press, pp 119–124Google Scholar
- Ésik Z, Kuich W (2013) Free inductive k-semialgebras. J Log Algebr Program 82(3–4):111–122MathSciNetCrossRefMATHGoogle Scholar
- Ferrari G, Montanari U, Tuosto E (2005) Coalgebraic minimization of HD-automata for the \(\pi \)-calculus using polymorphic types. Theor Comput Sci 331(2–3):325–365MathSciNetCrossRefMATHGoogle Scholar
- Flouret M, Laugerotte É (1997) Noncommutative minimization algorithms. Inf Process Lett 64(3):123–126MathSciNetCrossRefMATHGoogle Scholar
- Hasuo I, Jacobs B, Sokolova A (2007) Generic trace semantics via coinduction. Log Methods Comput Sci 3(4:11):1–36MathSciNetMATHGoogle Scholar
- Hopcroft JE, Ullman J (1979) Introduction to automata theory, languages and computation. Addison Wesley, ReadingMATHGoogle Scholar
- Kiefer S, Murawski AS., Ouaknine J, Wachter B, Worrell J (2011) Language equivalence for probabilistic automata. In: Proceedings of CAV ’11, LNCS 6806. Springer, pp 526–540Google Scholar
- König B, Küpper S (2014) Generic partition refinement algorithms for coalgebras and an instantiation to weighted automata. In: Proceedings of TCS ’14, IFIP AICT, LNCS 8705. Springer, pp. 311–325Google Scholar
- Krob D (1991) Expressions rationnelles sur un anneau. In: Topics in invariant theory: Séminaire d’Algèbre P. Dubreil et M.-P. Malliavin 1989–1990 (40ème Année). Springer, pp 215–243Google Scholar
- Krob D (1994) The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Int J Algebra Comput 4(3):405–425MathSciNetCrossRefMATHGoogle Scholar
- Larsen KG, Skou A (1989) Bisimulation through probabilistic testing (preliminary report). In: Proceedings of POPL ’89. ACM, pp 344–352Google Scholar
- Mika C (2015) Ein generisches Werkzeug für Sprachäquivalenz bei gewichteten Automaten. Master’s thesis, Universität Duisburg-EssenGoogle Scholar
- Mohri M (1997) Finite-state transducers in language and speech processing. Comput Linguist 23:269–311MathSciNetGoogle Scholar
- Mohri M (2009) Weighted automata algorithms. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata. Springer, Berlin, pp 213–254CrossRefGoogle Scholar
- Morisaki M, Sakai K (1980) A complete axiom system for rational sets with multiplicity. Theor Comput Sci 11(1):79–92MathSciNetCrossRefMATHGoogle Scholar
- Rahonis G (2009) Fuzzy languages. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata. Springer, Berlin, pp 481–517CrossRefGoogle Scholar
- Rot J, Bonchi F, Bonsangue M, Pous D, Rutten J, Silva A (2015) Enhanced coalgebraic bisimulation. Math Struct Comput Sci. doi: 10.1017/S0960129515000523
- Rutten JJMM (2000) Universal coalgebra: a theory of systems. Theor Comput Sci 249:3–80MathSciNetCrossRefMATHGoogle Scholar
- Sakarovitch J (2009) Rational and recognisable power series. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata. Springer, Berlin, pp 105–174Google Scholar
- Schützenberger M-P (1961) On the definition of a family of automata. Inf Control 4(2–3):245–270MathSciNetCrossRefMATHGoogle Scholar
- Staton S (2009) Relating coalgebraic notions of bisimulation. In: Proceedings of CALCO ’09, LNCS 5728. Springer, pp 191–205Google Scholar
- Urabe N, Hasuo I (2014) Generic forward and backward simulations III: quantitative simulations by matrices. In: Proceedings of CONCUR ’14, LNCS/ARCoSS 8704. Springer, pp 451–466Google Scholar