Skip to main content
Log in

Dynamic differential evolution with combined variants and a repair method to solve dynamic constrained optimization problems: an empirical study

  • Methodologies and Application
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

An empirical study of the algorithm dynamic differential evolution with combined variants with a repair method (DDECV \(+\) Repair) in the solution of dynamic constrained optimization problems is presented. Unexplored aspects of the algorithm are of particular interest in this work: (1) the role of each one of its elements, (2) its sensitivity to different change frequencies and change severities in the objective function and the constraints, (3) its ability to detect a change and recover after it, besides its diversity handling (percentage of feasible and infeasible solutions) during the search, and (4) its performance with dynamism present in different parts of the problem. Seven performance measures, eighteen recently proposed test problems and eight algorithms found in the specialized literature are considered in four experiments. The statistically validated results indicate that DDECV \(+\) Repair is robust to change frequency and severity variations, and that it is particularly fast to recover after a change in the environment, but highly depends on its repair method and its memory population to provide competitive results. DDECV \(+\) Repair shows evidence on the convenience of keeping a proportion of infeasible solutions in the population when solving dynamic constrained optimization problems. Finally, DDECV \(+\) Repair is highly competitive particularly when dynamism is present in both, objective function and constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramirez N (2014) Differential evolution with combined variants for dynamic constrained optimization. In: Evolutionary computation (CEC), 2014 IEEE congress on, pp 975–982. doi:10.1109/CEC.2014.6900629

  • Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramírez N (2015a) Differential evolution with a repair method to solve dynamic constrained optimization problems. In: Proceedings of the companion publication of the 2015 on genetic and evolutionary computation conference. ACM, New York, GECCO companion ’15, pp 1169–1172. doi:10.1145/2739482.2768471

  • Ameca-Alducin MY, Mezura-Montes E, Cruz-Ramírez N (2015b) A repair method for differential evolution with combined variants to solve dynamic constrained optimization problems. In: Proceedings of the 2015 on genetic and evolutionary computation conference. ACM, New York, GECCO ’15, pp 241–248. doi:10.1145/2739480.2754786

  • Aragón V, Esquivel S, Coello C (2013) Artificial immune system for solving dynamic constrained optimization problems. In: Alba E, Nakib A, Siarry P (eds) Metaheuristics for dynamic optimization, studies in computational intelligence, vol 433. Springer, Berlin, pp 225–263. doi:10.1007/978-3-642-30665-5_11

    Chapter  Google Scholar 

  • Azzouz R, Bechikh S, Said LB (2015) A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy. Soft Comput. doi:10.1007/s00500-015-1820-4

    Google Scholar 

  • Branke J, Schmeck H (2003) Designing evolutionary algorithms for dynamic optimization problems. In: Ghosh A, Tsutsui S (eds) Advances in evolutionary computing, Natural Computing Series. Springer, Berlin, pp 239–262. doi:10.1007/978-3-642-18965-4_9

    Chapter  Google Scholar 

  • Bu C, Luo W, Yue L (2016) Continuous dynamic constrained optimization with ensemble of locating and tracking feasible regions strategies. IEEE Trans Evol Comput. doi:10.1109/TEVC.2016.2567644

    Google Scholar 

  • Cobb H (1990) An investigation into the use of hypermutation as an adaptive operator in genetic algorithms having continuous, time-dependent nonstationary environments. Technical report, Naval Research Lab, Washington

  • Cobb H, Grefenstette J (1993) Genetic algorithms for tracking changing environments. In: Forrest S (ed) ICGA. Morgan Kaufmann, Los Altos, pp 523–530

    Google Scholar 

  • Coello Coello CA (2002) Theoretical and numerical constraint handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191(11–12):1245–1287

    Article  MathSciNet  MATH  Google Scholar 

  • du Plessis M (2012) Adaptive multi-population differential evolution for dynamic environments, Ph.D. thesis. Faculty of Engineering, Built Environment and Information Technology, University of Pretoria

  • Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl Mech Eng 186(24):311–338

    Article  MATH  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18. doi:10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  • Filipiak P, Lipinski P (2014) Univariate marginal distribution algorithm with Markov chain predictor in continuous dynamic environments. Springer, Cham, pp 404–411

    Google Scholar 

  • Grefenstette J (1992) Genetic algorithms for changing environments. In: Parallel problem solving from nature 2. Elsevier, Amsterdam, pp 137–144

  • Jiang S, Yang S (2016) Evolutionary dynamic multiobjective optimization: benchmarks and algorithm comparisons. IEEE Trans Cybern. doi:10.1109/TCYB.2015.2510698

    Google Scholar 

  • Li C, Yang S, Yang M (2014) An adaptive multi-swarm optimizer for dynamic optimization problems. Evol Comput 22(4):559–594

    Article  Google Scholar 

  • Liu R, Chen Y, Ma W, Mu C, Jiao L (2014b) A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model. Soft Comput 18(10):1913–1929

    Article  Google Scholar 

  • Liu R, Chen Y, Ma W, Mu C, Jiao L (2014b) A novel cooperative coevolutionary dynamic multi-objective optimization algorithm using a new predictive model. Soft Comput 18(10):1913–1929

    Article  Google Scholar 

  • López-Ibáñez M, Stützle T (2012) Automatically improving the anytime behaviour of optimisation algorithms, Technical Report. TR/IRIDIA/2012-012, IRIDIA, Université Libre de Bruxelles, Belgium, published in European Journal of Operations Research Radulescu et al. (2013)

  • Martínez-Peñaloza MG, Mezura-Montes E (2015) Immune generalized differential evolution for dynamic multiobjective optimization problems. In: 2015 IEEE Congress on evolutionary computation (CEC), pp 1918–1925. doi:10.1109/CEC.2015.7257120

  • Mezura-Montes E (ed) (2009) Constraint-handling in evolutionary optimization, studies in computational intelligence, vol 198. Springer, Berlin

    Google Scholar 

  • Mezura-Montes E, Coello CAC (2011) Constraint-handling in nature-inspired numerical optimization: past, present and future. Swarm Evol Comput 1(4):173–194

    Article  Google Scholar 

  • Mezura-Montes E, Miranda-Varela ME, del Carmen Gómez-Ramón R (2010) Differential evolution in constrained numerical optimization. An empirical study. Inf Sci 180(22):4223–4262

    Article  MathSciNet  MATH  Google Scholar 

  • Michalewicz Z, Nazhiyath G (1995) Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints. In: Evolutionary computation, IEEE international conference on, vol 2, pp 647–651. doi:10.1109/ICEC.1995.487460

  • Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4(1):1–32

    Article  Google Scholar 

  • Mukherjee R, Debchoudhury S, Swagatam D (2016) Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur J Oper Res 253(2):337–355

    Article  MATH  Google Scholar 

  • Nguyen TT, Yao X (2009) Benchmarking and solving dynamic constrained problems. In: Evolutionary computation, 2009. CEC ’09. IEEE congress on, pp 690–697. doi:10.1109/CEC.2009.4983012

  • Nguyen T, Yao X (2010) Detailed experimental results of GA, RIGA, HYPERm and GA + Repair on the G24 set of benchmark problems. Technical report, School Computer Science, University of Birmingham, Birmingham. http://www.staff.livjm.ac.uk/enrtngu1/Papers/DCOPfulldata

  • Nguyen T, Yao X (2012) Continuous dynamic constrained optimization: the challenges. IEEE Trans Evol Comput 16(6):769–786. doi:10.1109/TEVC.2011.2180533

    Article  Google Scholar 

  • Nguyen T, Yao X (2013) Evolutionary optimization on continuous dynamic constrained problems—an analysis. In: Yang S, Yao X (eds) Evolutionary computation for dynamic optimization problems, studies in computational intelligence, vol 490. Springer, Berlin, pp 193–217. doi:10.1007/978-3-642-38416-5_8

    Chapter  Google Scholar 

  • Nguyen T, Yang S, Branke J (2012) Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol Comput 6:1–24

    Article  Google Scholar 

  • Nguyen TT, Yang S, Branke J, Yao X (2013) chap Evolutionary dynamic optimization: methodologies. In: Evolutionary computation for dynamic optimization problems. Springer, Berlin, pp 39–64

  • Pal K, Saha C, Das S (2013a) Differential evolution and offspring repair method based dynamic constrained optimization. In: Panigrahi B, Suganthan P, Das S, Dash S (eds) Swarm, evolutionary, and memetic computing, Lecture notes in Computer Science, vol 8297. Springer, Berlin, pp 298–309. doi:10.1007/978-3-319-03753-0_27

    Chapter  Google Scholar 

  • Pal K, Saha C, Das S, Coello-Coello C (2013b) Dynamic constrained optimization with offspring repair based gravitational search algorithm. In: Evolutionary computation (CEC), 2013 IEEE congress on, pp 2414–2421. doi:10.1109/CEC.2013.6557858

  • Pekdemir H, Topcuoglu HR (2016) Enhancing fireworks algorithms for dynamic optimization problems. In: 2016 IEEE congress on evolutionary computation (CEC), pp 4045–4052

  • Price K, Storn R, Lampinen J (2005) Differential evolution: a practical approach to global optimization (Natural Computing Series). Springer, Secaucus

  • Radulescu A, López-Ibáñez M, Stützle T (2013) Automatically improving the anytime behaviour of multiobjective evolutionary algorithms. In: Purshouse R, Fleming P, Fonseca CM, Greco S, Shaw J (eds) Evolutionary multi-criterion optimization, Lecture notes in Computer Science, vol 7811. Springer, Berlin, pp 825–840. doi:10.1007/978-3-642-37140-0_61

    Chapter  Google Scholar 

  • Rashedi E, Nezamabadi H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Inf Sci 179(13):2232–2248

    Article  MATH  Google Scholar 

  • Richter H (2009a) Change detection in dynamic fitness landscapes: an immunological approach. In: Nature biologically inspired computing, 2009. NaBIC 2009. World Congress on, pp 719–724. doi:10.1109/NABIC.2009.5393482

  • Richter H (2009b) Detecting change in dynamic fitness landscapes. In: Evolutionary computation. CEC ’09. IEEE congress on, pp 1613–1620

  • Rohlfshagen P, Yao X (2013) chap Evolutionary dynamic optimization: challenges and perspectives. In: Evolutionary computation for dynamic optimization problems. Springer, Berlin, pp 65–84

  • Sharma A, Sharma D (2012a) chap ICHEA—a constraint guided search for improving evolutionary algorithms. In: Neural information processing: 19th international conference, ICONIP 2012, Doha, Qatar, Proceedings. Part I. Springer, Berlin, pp 269–279

  • Sharma A, Sharma D (2012b) chap Solving dynamic constraint optimization problems using ICHEA. In: Neural information processing: 19th international conference, ICONIP 2012. Doha, proceedings, Part III. Springer, Berlin, pp 434–444

  • Singh H, Isaacs A, Nguyen T, Ray T, Yao X (2009) Performance of infeasibility driven evolutionary algorithm (IDEA) on constrained dynamic single objective optimization problems. In: Evolutionary computation, 2009. CEC ’09. IEEE Congress on, pp 3127–3134. doi:10.1109/CEC.2009.4983339

  • Trojanowski K, Michalewicz Z (1999) Searching for optima in non-stationary environments. In: Evolutionary computation, 1999. CEC 99. Proceedings of the 1999 Congress on, vol 3, p 1850. doi:10.1109/CEC.1999.785498

  • Umenai Y, Uwano F, Tajima Y, Nakata M, Sato H, Takadama K (2016) A modified cuckoo search algorithm for dynamic optimization problems. In: 2016 IEEE Congress on evolutionary computation (CEC), pp 1757–1764

  • Yu X, Wu X (2016) A multi-point local search algorithm for continuous dynamic optimization. In: 2016 IEEE Congress on evolutionary computation (CEC), pp 2736–2743

  • Zhang W, Yen GG, Wang X (2016) An immune inspired framework for optimization in dynamic environment. In: 2016 IEEE congress on evolutionary computation (CEC), pp 1800–1807

Download references

Acknowledgments

The first author acknowledges support from the Mexican National Council of Science and Technology (CONACyT) through a scholarship to pursue graduate studies at the University of Veracruz. The second author acknowledges support from CONACyT through Project No. 220522. This study was funded by the Mexican National Council of Science and Technology CONACyT (Grant No. 220522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María-Yaneli Ameca-Alducin.

Ethics declarations

Conflict of interest

María-Yaneli Ameca-Alducin declares that she has no conflict of interest. Efrén Mezura-Montes declares that he has no conflict of interest. Nicandro Cruz-Ramírez declares that he has no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameca-Alducin, MY., Mezura-Montes, E. & Cruz-Ramírez, N. Dynamic differential evolution with combined variants and a repair method to solve dynamic constrained optimization problems: an empirical study. Soft Comput 22, 541–570 (2018). https://doi.org/10.1007/s00500-016-2353-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-016-2353-1

Keywords

Navigation