Soft Computing

, Volume 21, Issue 21, pp 6213–6223 | Cite as

Notes on divisible MV-algebras

Foundations
  • 231 Downloads

Abstract

In this notes, we study the class of divisible MV-algebras inside the algebraic hierarchy of MV-algebras with product. We connect divisible MV-algebras with \(\mathbb Q\)-vector lattices, we present the divisible hull as a categorical adjunction, and we prove a duality between finitely presented algebras and rational polyhedra.

Keywords

DMV-algebras MV-algebras Rational Łukasiewicz logic Divisible hull Rational polyhedra 

References

  1. Baker KA (1968) Free vector lattices. Canad J Math 20:58–66MathSciNetCrossRefMATHGoogle Scholar
  2. Beynon WM (1975) Duality theorem for finitely generated vector lattices. Proc London Math Soc 31(3):114–128MathSciNetCrossRefMATHGoogle Scholar
  3. Birkoff G (1967) Lattice theory, 3rd edn. AMS Colloquium Publications, New yorkGoogle Scholar
  4. Chang CC (1958) Algebraic analysis of many valued logics. Trans Am Math Soc 88:467–490MathSciNetCrossRefMATHGoogle Scholar
  5. Chang CC (1959) A new proof of the completeness of the Łukasiewicz axioms. Trans Am Math Soc 93:74–80MATHGoogle Scholar
  6. Cignoli R, D’Ottaviano IML, Mundici D (1999) Algebraic foundation of many valued reasoning. Kluwer Academic Publication, DordrechtMATHGoogle Scholar
  7. Diaconescu D, Leuştean I (2015) The Riesz hull of a semisimple MV-algebra. Mathematica Slovaka (special issue in honor of Antonio Di Nola) 65(4):801–816MathSciNetMATHGoogle Scholar
  8. Di Nola A, Dvurečenskij A (2001) Product MV-algebras. Mult-Valued Log 6:193–215MathSciNetMATHGoogle Scholar
  9. Di Nola A, Flondor P, Leustean I (2003) MV-modules. J Algebra 267(1):21–40MathSciNetCrossRefMATHGoogle Scholar
  10. Di Nola A, Leuştean I (2011) Łukasiewicz Logic and MV-algebras. In: Cintula P et al (eds) Handbook of Mathematical Fuzzy Logic. Studies in Logic. College Publications, LondonGoogle Scholar
  11. Di Nola A, Leuştean I (2014) Łukasiewicz logic and Riesz spaces. Soft Comput 18(12):2349–2363CrossRefMATHGoogle Scholar
  12. Di Nola A, Lenzi G, Vitale G (2016) Riesz-McNaughton functions and Riesz MV-algebras of nonlinear functions. Fuzzy Sets and Systems. doi:10.1016/j.fss.2016.03.003
  13. Gerla B (2001) Rational Łukasiewicz logic and divisible MV-algebras. Neural Netw World 10(11):579–584Google Scholar
  14. Lapenta S (2015) MV-algebras with products: connecting the Pierce-Birkhoff conjecture with Łukasiewicz logic, PhD ThesisGoogle Scholar
  15. Lapenta S, Leuştean I (2015) Towards understanding the Pierce-Birkhoff conjecture via MV-algebras. Fuzzy Sets Syst 276:114–130Google Scholar
  16. Lapenta S, Leuştean I (2016) Scalar extensions for the algebraic structures of Łukasiewicz logic. J Pure Appl Algebra 220:1538–1553Google Scholar
  17. Madden J (1985) \(l\)-groups of piecewise linear functions, Ordered algebraic structures (Cincinnati, Ohio, 1982), Lecture Notes in Pure and Appl Math 99:117–124Google Scholar
  18. Marra V, Spada L (2013) Duality, projectivity and unification in Łukasiewicz logic and MV-algebras. Ann Pure Appl Log 164(3):192–210CrossRefMATHGoogle Scholar
  19. McNaughton R (1951) A theorem about infinite-valued sentential logic. J Symb Log 16:1–13MathSciNetCrossRefMATHGoogle Scholar
  20. Montagna F (2000) An algebraic approach to propositional fuzzy logic. J Log Lang Inf 9:91–124MathSciNetCrossRefMATHGoogle Scholar
  21. Mundici D (1986) Interpretation of ACF*-algebras in Łukasiewicz sentential calculus. J Funct Anal 65:15–63MathSciNetCrossRefMATHGoogle Scholar
  22. Mundici D (1999) Tensor products and the Loomis-Sikorski theorem for MV-algebras. Adv Appl Math 22:227–248MathSciNetCrossRefMATHGoogle Scholar
  23. Mundici D (2011) Advances in Łukasiewicz calculus and MV-algebras, Trends in Logic, vol 35. SpringerGoogle Scholar
  24. Ovchinnikov S (2002) Max-min representation of piecewise linear functions. Beiträge zur Algebra und Geometrie - Contrib Algebra Geom 43(1):297–302MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of SalernoFiscianoItaly
  2. 2.Department of Computer Science, Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania

Personalised recommendations