Soft Computing

, Volume 21, Issue 19, pp 5631–5639 | Cite as

The decomposition of linearly ordered pseudo-hoops

Foundations

Abstract

We generalize to the non-commutative case a construction of the Hájek decomposition using an equivalence relation on linear pseudo-hoops. Other two equivalence relations are used to obtain the Agliano–Montagna and the Cignoli–Esteva–Godo–Torrens decompositions. The comparability of the three decompositions follows from this construction.

Keywords

Non-commutative fuzzy logic Pseudo-hoops Ordinal sum decomposition 

References

  1. Agliano P, Montagna F (2003) Varieties of BL-algebras I: general properties. J Pure Appl Algebra 181:105–129MathSciNetCrossRefMATHGoogle Scholar
  2. Busaniche M (2004) Decomposition of BL-chains. Algebra Universalis 52:519–525MathSciNetCrossRefMATHGoogle Scholar
  3. Ceterchi R (2001) Pseudo–Wajsberg algebras. Mult-Valued Log 6(1–2):67–88 (a special issue dedicated to the memory of Gr. C. Moisil)MathSciNetMATHGoogle Scholar
  4. Ceterchi R (2012) The Decomposition of linearly ordered pseudo-hoops. In: LATD 2012, 10–14 September 2012, Kanazawa, Ishikawa, JapanGoogle Scholar
  5. Ceterchi R (2014) A categorical equivalence for a class of product pseudo-hoops. In: Proceedings of the workshop “Theory Day in Computer Science (DACS 2014)”, Analele Universitatii Bucuresti, Informatica, Anul LXI, pp 105–115Google Scholar
  6. Cignoli R, Esteva F, Godo L, Torrens A (2000) Basic fuzzy logic is the logic of continuous t-norms and their residua. Soft Comput 4:106–112CrossRefGoogle Scholar
  7. Di Nola A, Georgescu G, Iorgulescu A (2002a) Pseudo-BL algebras I. Mult-Valued Log 8:673–714Google Scholar
  8. Di Nola A, Georgescu G, Iorgulescu A (2002b) Pseudo-BL algebras II. Mult-Valued Log 8:715–750Google Scholar
  9. Dvurecenskij A (2007a) Agliano–Montagna type decomposition of linear pseudo-hoops and its applications. J Pure Appl Algebra 211:851–861Google Scholar
  10. Dvurecenskij A (2007b) Every linear pseudo-BL algebra admits a state. Soft Comput 11:495–501Google Scholar
  11. Fuchs L (1963) Partially ordered algebraic systems. Pergamon Press, New YorkMATHGoogle Scholar
  12. Georgescu G, Iorgulescu A (2001) Pseudo-MV algebras. Mult-Valued Log 6:95–135MathSciNetMATHGoogle Scholar
  13. Georgescu G, Leustean L, Preoteasa V (2005) Pseudo-hoops. J Mult-Valued Log Soft Comput 11:153–184MathSciNetMATHGoogle Scholar
  14. Hájek P (1998) Basic fuzzy logic and BL-algebras. Soft Comput 2:124–128CrossRefGoogle Scholar
  15. Laskowski MC, Shashoua YD (2002) A classification of BL-algebras. Fuzzy Sets Syst 131:271–282MathSciNetCrossRefMATHGoogle Scholar
  16. Mostert PS, Shields AL (1957) On the structure of semigroups on a compact manifold with boundary. Ann Math 65:117–143MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Faculty of Mathematics and CSUniversity of BucharestBucharestRomania

Personalised recommendations