Soft Computing

, Volume 21, Issue 23, pp 7099–7106 | Cite as

Comparison of neural network topologies for the classification of frogs by their songs

  • Sergio Flórez Percy
  • Andrea Mesa Piedrahita
  • Roberto Ferro Escobar
  • Rubén González Crespo
Methodologies and Application
  • 336 Downloads

Abstract

At present the capture and recognition of sounds from different animal species have great value in making biological and environmental research in certain areas affected by humans. In this paper, two topologies for five species of anurans are proposed using a database that contains samples of sounds emitted by them. For the development of systems is performed processing audio signals to digitize it; then, the samples to extract the main features that will be our input system for subsequent classification methods using back-propagation and self-organized maps are processed.

Keywords

Neural network Perceptron MLP Self-organizing map MFCC Fourier 

References

  1. Agostini M (2012) Myths and truths about toads and frogs. In: Frogs and toads background your home. Publishing house Universidad de La Plata (Edulp): Buenos Aires, Argentina, 37Google Scholar
  2. AmphibiaWebEcuador. Introduction. Ecuador, Museum of Zoology. http://zoologia.puce.edu.ec/Vertebrados/Anfibios/AnfibiosEcuador/Default.aspx
  3. Bardeli R, Wolff D, Kurth F, Koch M, Tauchert KH, Frommolt K-H (2010) Detecting bird sounds in a complex acoustic environment and application to bioacoustic monitoring. Pattern Recogn Lett 31(12): 1524–1534, 174, 175, 182Google Scholar
  4. Castaneda-Delgado JE, Cervantes-Villagrana AR, Rivas-Santiago B (2012) Antimicrobial peptides: a likely arsenal against HIV infection. Invest clín 53(1):71–83Google Scholar
  5. Chou C-H, Hsinchu Chung Hua Univ, Lee C-H, Ni H-W (2007) Bird species recognition by comparing the HMMs of the syllables. 5–7 Sept 2007Google Scholar
  6. Chou C-H, Liu P-H, Cai B (2008) On the studies of syllable segmentation and improving MFCCs for automatic birdsong recognition. In: Proceedings of the 2008 IEEE Asia-Pacific Services Computing Conference. Washington, DC, USA: IEEE Computer SocietyGoogle Scholar
  7. Cueva-Fernandez G et al (2015) Fuzzy system to adapt web voice interfaces dynamically in a vehicle sensor tracking application definition. Soft Comput. doi:10.1007/s00500-015-1709-2 Google Scholar
  8. DARPA Neural Networks studies (1988) AFCEAInternational Press, p 60Google Scholar
  9. Data Mining Tools (2007) WEKA (Waikato Environment for Knowledge Analysis). Juan A. Botía Blaya. November 27, 2007Google Scholar
  10. Díaz Luis M, Cádiz Antonio (2007) Descriptive guide for identifying calls announcement of cuban eleutherodactylus frogs (anura: leptodactylidae)Google Scholar
  11. Inventory and Monitoring Techniques for amphibians of Tropical Andean region [online] pp 92, 2006. http://www.amphibians.org/wp-content/uploads/2013/07/Monitoreo-de-anfibios-baja-final.pdf
  12. Kohonen T (2001) Self-organizing maps. Springer: ISBN: 978-3540679219Google Scholar
  13. Laurila A, Kujasalo J (1999) Habitat duration, predation risk and phenotypic plasticity in common frog (Rana temporaria) tadpoles. J Anim Ecol 68:1123–1132. doi:10.1046/j.1365-2656.1999.00354.x CrossRefGoogle Scholar
  14. Lee C-H, Han C-C, Chuang C-C (2008) Automatic classification of bird species from their sounds using two-dimensional cepstral coefficients. IEEE Trans Audio Speech Lang Process 16(8):1541–1550, 173, 175, 177, 181, 182Google Scholar
  15. López RF, Fernández JM (eds) (2013) Artificial neural networks: theoretical fundamentals and practical applications. Series, methodology and data analysis in social sciences. Netbiblo, pp 83-85Google Scholar
  16. Marsh DM, Trenham PC (2008) Current trends in plant and animal population monitoring. Conserv Biol 22(3):647–655 173CrossRefGoogle Scholar
  17. Mcilraith AL, Card HC (1997) Birdsong recognition using backpropagation and multivariate statistics. IEEE Trans Signal Process 45(11):2740–2748CrossRefGoogle Scholar
  18. Mesa D, Bernal A (2005) Protocols for the preservation and management of biological collections. Sci Bull Mus Center Mus Nat Hist 10:117–148Google Scholar
  19. Multivariate analysis (Diploma in Statistics). Item 3: Principal component analysis. http://halweb.uc3m.es/esp/Personal/personas/jmmarin/esp/AMult/AMult.html
  20. Nicolás T, Giraldo TN Salazar JT (2006) Anuran species recognition by their songs, audio files, using techniques of digital signal processing. Universidad Nacional branch office Manizales, December 2006Google Scholar
  21. Ntalampiras S, Potamitis I, Fakotakis N (2011) Probabilistic novelty detection for acoustic surveillance under real-world conditions. IEEE Trans Multimed 13(4):713–719 182CrossRefGoogle Scholar
  22. Riedmiller (1993) Proceedings of the IEEE International Conference on Neural Networks (ICNN), San Francisco, pp 586–591Google Scholar
  23. Selin A, Turunen J, Tanttu JT (2007) Wavelets in recognition of bird sounds. EURASIP J Appl Signal Process 2007(1):141–141 182CrossRefMATHGoogle Scholar
  24. Selouani SA et al (2005) Automatic birdsong recognition based on autoregressive time-delay neural networks. In: Proceedings of ICSC Congress Computational Intelligence Methods and Applications, pp 1–6Google Scholar
  25. Semwal VB, Mondal K, Nandi GC (2015) Robust and accurate feature selection for humanoid push recovery and classification: deep learning approach. Neural Comput Appl 1–10. doi:10.1007/s00521-015-2089-3
  26. Semwal VB, Raj M, Nandi GC (2015) Biometric gait identification based on a multilayer perceptron. Robot Auton Syst 65:65–75CrossRefGoogle Scholar
  27. Sin-Horng C, Wen-Yuan CC-JL (1996) A speech recognition method based on the sequential multi-layer perceptrons. Neural Netw 9(4):655–669CrossRefGoogle Scholar
  28. Veintimilla D, Salinas K, Aguirre N (2014) Anuros diversity patterns in the paramo ecosystem of the Podocarpus National Park. Cedamaz, vol 2, septiembre, pp 31–39Google Scholar
  29. William R, González AMA (2014) Neural networks through shared maps in mobile devices. Int J Interact Multimed Artif Intel 3(1):28–35Google Scholar
  30. You-Jia C, Heng-Ming C, Jui-Jiun J, Sheng-Chieh T, Yi-Ju Y, Chenn-Jung HP-AH (2014) Intelligent feature extraction and classification of anuran vocalizations. Appl Soft Comput 19:1–7CrossRefGoogle Scholar
  31. Zainuddin OPZ (2011) Modified wavelet neural network in function approximation and its application in prediction of time-series pollution data. Appl Soft Comput 11(8):4866–4874CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sergio Flórez Percy
    • 1
  • Andrea Mesa Piedrahita
    • 1
  • Roberto Ferro Escobar
    • 1
  • Rubén González Crespo
    • 2
  1. 1.Universidad Distrital Francisco José de CaldasBogotáColombia
  2. 2.Universidad Internacional de La Rioja (UNIR)LogroñoSpain

Personalised recommendations