Soft Computing

, Volume 21, Issue 21, pp 6381–6392 | Cite as

Decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation

  • Sheng Xin Zhang
  • Li Ming Zheng
  • Lu Liu
  • Shao Yong Zheng
  • Yong Mei Pan
Methodologies and Application

Abstract

Multi-objective evolutionary algorithms based on decomposition (MOEA/D) has demonstrated excellent performance in dealing with multi-objective optimization problems. As two essential issues in MOEA/D, mating neighborhood sizes and reproduction operators determine the exploitation and exploration abilities of the algorithm. This paper proposes a new decomposition-based multi-objective evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation (MOEA/D-ATO), which adaptively assigns the suitable combination of mating neighborhood size and reproduction operator to each subproblem at different searching stages. Numerical results indicate that the proposed adaptation is effective. Moreover, comparison with other adaptive steady-state MOEA/D variants and state-of-art generational MOEA/D variants shows that the proposed MOEA/D-ATO algorithm performs significantly better in terms of solution quality and CPU time.

Keywords

Mating neighborhood sizes and reproduction operators adaptation Multi-objective evolutionary algorithm based on decomposition (MOEA/D) Multi-objective optimization 

References

  1. Brest J, Greiner S, Boskovic B et al (2006) Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657. doi:10.1109/TEVC.2006.872133 CrossRefGoogle Scholar
  2. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur J Oper Res 181(3):1653–1669. doi:10.1016/j.ejor.2006.08.008 CrossRefMATHGoogle Scholar
  3. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume based many-objective optimization. Evol Comput 19(1):45–76. doi:10.1162/EVCO_a_00009 CrossRefGoogle Scholar
  4. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197. doi:10.1109/4235.996017 CrossRefGoogle Scholar
  5. Goncalves RA, Almeida CP, Pozo A (2015) Upper confidence bound (UCB) algorithms for adaptive operator selection in MOEA/D. In: 8th International conference on evolutionary multi-criterion optimization (EMO2015), Guimarães, Portugal, pp 411–425. doi:10.1007/978-3-319-15934-8_28
  6. Iorio AW, Li X (2004) Solving rotated multi-objective optimization problems using differential evolution. In: Proceedings of advances in artificial intelligence (AI2004), pp 861–872Google Scholar
  7. Ishibuchi H, Narukawa K, Tsukamoto N, Nojima Y (2008) An empirical study on similarity-based mating for evolutionary multiobjective combinatorial optimization. Eur J Oper Res 188(1):57–75. doi:10.1016/j.ejor.2007.04.007 CrossRefMATHGoogle Scholar
  8. Ishibuchi H, Akedo N, Nojima Y (2013) Relation between neighborhood size and MOEA/D performance on many-objective problems. In: 7th International conference on evolutionary multi-criterion optimization (EMO2013), Sheffield, UK, pp 459–474. doi:10.1007/978-3-642-37140-0_35
  9. Jiang S, Yang S (2015) An improved multiobjective optimization evolutionary algorithm based on decomposition for complex Pareto fronts. IEEE Trans Cybern. doi:10.1109/TCYB.2015.2403131
  10. Li H, Zhang Q (2009) Multiobjective optimization problems with complicated pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 12(2):284–302. doi:10.1109/TEVC.2008.925798 CrossRefGoogle Scholar
  11. Li K, Fialho A, Kwong S, Zhang Q (2014a) Adaptive operator selection with bandits for multiobjective evolutionary algorithm based decomposition. IEEE Trans Evol Comput 18(1):114–130. doi:10.1109/TEVC.2013.2239648
  12. Li K, Zhang Q, Kwong S, Li M, Wang R (2014b) Stable matching-based selection in evolutionary multiobjective optimization. IEEE Trans Evol Comput 18(6):909–923. doi:10.1109/TEVC.2013.2293776
  13. Li Y, Zhou A, Zhang G (2014c) An MOEA/D with multiple differential evolution mutation operators. In: Proceedings of the IEEE congress on evolutionary computation (CEC2014), China, pp 397–404. doi:10.1109/CEC.2014.6900339
  14. Li K, Kwong S, Zhang Q, Deb K (2015a) Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans Cybern 45(10):2076–2088. doi:10.1109/TCYB.2014.2365354
  15. Li YL, Zhou YR, Zhan ZH et al (2015b) A primary theoretical study on decomposition based multiobjective evolutionary algorithms. IEEE Trans Evol Comput. doi:10.1109/TEVC.2015.2501315
  16. Liu HL, Gu F, Zhang Q (2014) Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans Evol Comput 18(3):450–455. doi:10.1109/TEVC.2013.2281533 CrossRefGoogle Scholar
  17. Ma XL, Liu F, Qi YT et al (2014a) MOEA/D with opposition-based learning for multiobjective optimization problem. Neurocomputing 146:48–64. doi:10.1016/j.neucom.2014.04.068
  18. Ma XL, Liu F, Qi YT et al (2014b) MOEA/D with Baldwinian learning inspired by the regularity property of continuous multiobjective problem. Neurocomputing 145:336–352. doi:10.1016/j.neucom.2014.05.025
  19. Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417. doi:10.1109/TEVC.2008.927706 CrossRefGoogle Scholar
  20. Qi YT, Ma XL, Liu F et al (2014) MOEAD with adaptive weight adjustment. Evol Comput 22(2):231–264. doi:10.1162/EVCO_a_00109 CrossRefGoogle Scholar
  21. Robic T, Filipic B (2005) DEMO: differential evolution for multi-objective optimization. In: Third international conference on evolutionary multi-criterion optimization (EMO2005), Guanajuato, Mexico, pp 520–533. doi:10.1007/978-3-540-31880-4_36
  22. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359. doi:10.1023/A:1008202821328 MathSciNetCrossRefMATHGoogle Scholar
  23. Tanabe R, Fukunaga A (2013) Success-history based parameter adaptation for differential evolution. In: Proceedings of the IEEE congress on evolutionary computation (CEC2013), México, pp 71–78. doi:10.1109/CEC.2013.6557555
  24. Wang YN, Wu LH, Yuan XF (2010) Multi-objective self-adaptive differential evolution with elitist archive and crowding entropy-based diversity measure. Soft Comput 14(3):193–209. doi:10.1007/s00500-008-0394-9 CrossRefGoogle Scholar
  25. Wang Y, Cai Z, Zhang Q (2012) Differential evolution with composite trial vector generation strategies and control parameters. IEEE Trans Evol Comput 15(1):55–66. doi:10.1109/TEVC.2010.2087271 CrossRefGoogle Scholar
  26. Wang Z, Zhang Q, Zhou A et al (2015a) Adaptive replacement strategies for MOEA/D. IEEE Trans Cybern. doi:10.1109/TCYB.2015.2403849
  27. Wang L, Zhang Q, Zhou A et al (2015b) Constrained subproblems in decomposition based multiobjective evolutionary algorithm. IEEE Trans Evol Comput. doi:10.1109/TEVC.2015.2457616
  28. Zitzler E, Thiele L, Laumanns M et al (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132. doi:10.1109/TEVC.2003.810758 CrossRefGoogle Scholar
  29. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. doi:10.1109/TEVC.2007.892759 CrossRefGoogle Scholar
  30. Zhang Q, Zhou A, Zhao SZ et al (2008) Multiobjective optimization test instances for the CEC2009 special session and competition. Technical report, Nanyang Technological University, SingaporeGoogle Scholar
  31. Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958. doi:10.1109/TEVC.2009.2014613 CrossRefGoogle Scholar
  32. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: Proceedings of the IEEE congress on evolutionary computation (CEC2009), Trondheim, pp 203–208. doi:10.1109/CEC.2009.4982949
  33. Zhang Q, Li H, Maringer D et al (2010) MOEA/D with NBI-style Tchebycheff approach for portfolio management. In: Proceedings of the IEEE congress on evolutionary computation (CEC2010), Barcelona, pp 1–8. doi:10.1109/CEC.2010.5586185
  34. Zhao SZ, Suganthan PN, Zhang Q (2012) Decomposition based multiobjective evolutionary algorithm with an ensemble of neighborhood sizes. IEEE Trans Evol Comput 16(3):442–446. doi:10.1109/TEVC.2011.2166159 CrossRefGoogle Scholar
  35. Zhou A, Zhang Q (2015) Are all the subproblems equally important? Resource allocation in decomposition based multiobjective evolutionary algorithms. IEEE Trans Evol Comput. doi:10.1109/TEVC.2015.2424251

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sheng Xin Zhang
    • 1
  • Li Ming Zheng
    • 1
  • Lu Liu
    • 1
  • Shao Yong Zheng
    • 2
  • Yong Mei Pan
    • 3
  1. 1.Department of Electronic Engineering, School of Information Science and TechnologyJinan UniversityGuangzhouChina
  2. 2.Department of Electronics and Communication EngineeringSun Yat-sen UniversityGuangzhouChina
  3. 3.School of Electronic and Information EngineeringSouth China University of TechnologyGuangzhouChina

Personalised recommendations