Soft Computing

, Volume 21, Issue 21, pp 6269–6277 | Cite as

Role-based intelligent application state computing for OpenFlow distributed controllers in software-defined networking

Methodologies and Application
  • 221 Downloads

Abstract

Software-defined networking, in which a network is programmable and controlled with soft computing techniques, is widely used in various network testbeds. To satisfy the demands of large networks, control planes are constructed with distributed controllers, which are a routine aspect of OpenFlow research. Distributed controllers are scalable and fault tolerant; thus, they can replace centralized controllers in large-scale networks. In the foreseeable future, there will emerge more applications based on soft computing techniques. Because there is scant research on application management, a distributed controller with a role-based mechanism for properly managing applications and their states based on their properties has yet to be developed. Thus, in this study, we propose a systematic approach for classifying applications according to their roles to dynamically deploy applications and their states. Both applications and their states are managed based on their properties, including CPU, memory and network bandwidth. This intelligent mechanism, which computes the overhead of applications, provides a compromise between storage and bandwidth usage in OpenFlow distributed controllers. We propose a hierarchical system to differentiate applications and design a controller module for dynamically determining the status of an application.

Keywords

Software-defined networking OpenFlow Intelligent application management Distributed controller 

References

  1. Agarwal S, Kodialam M, Lakshman T (2013) Traffic engineering in software defined networks. In: 2013 Proceedings IEEE INFOCOM, Turin, Italy, pp 2211–2219Google Scholar
  2. Banikazemi M, Olshefski D, Shaikh A, Tracey J, Wang G (2013) Meridian: an SDN platform for cloud network services. IEEE Commun Mag 51(2):120–127CrossRefGoogle Scholar
  3. Berde P, Gerola M, Hart J, Higuchi Y, Kobayashi M, Koide T, Lantz B, O’Connor B, Radoslavov P, Snow W (2014) ONOS: towards an open, distributed SDN OS. In: Proceedings of the third workshop on hot topics in software defined networking, Chicago, IL, ACM, pp 1–6Google Scholar
  4. Chang H-T, Wang S-Y (2015) Using sdn technology to mitigate congestion in the openstack data center network. In: 2015 IEEE international conference on communications (ICC), London, UK, pp 401–406Google Scholar
  5. Cleder Machado C, Zambenedetti Granville L, Schaeffer-Filho A, Araujo Wickboldt J (2014) Towards sla policy refinement for qos management in software-defined networking. In: 2014 IEEE 28th international conference on advanced information networking and applications (AINA), Victoria, Canada, pp 397–404Google Scholar
  6. Das S, Sharafat A, Parulkar G, McKeown N (2011) MPLS with a simple open control plane. In: Optical Fiber Communication Conference, page OWP2, Los Angeles, CA, Optical Society of AmericaGoogle Scholar
  7. Dixit A, Hao F, Mukherjee S, Lakshman T, Kompella R (2013) Towards an elastic distributed sdn controller. In: HotSDN’13 proceedings of the second ACM SIGCOMM computer communication review, vol. 43, New York, NY, ACM, pp 7–12Google Scholar
  8. Erickson D (2013) The beacon openflow controller. In: Proceedings of the second ACM SIGCOMM workshop on hot topics in software defined networking, the Chinese University of Hong Kong, ACM, pp 13–18Google Scholar
  9. Giotis K, Argyropoulos C, Androulidakis G, Kalogeras D, Maglaris V (2014) Combining openflow and sflow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments. Comput Netw 62:122–136CrossRefGoogle Scholar
  10. Hassas Yeganeh S, Ganjali Y (2012) Kandoo: a framework for efficient and scalable offloading of control applications. In: Proceedings of the first workshop on hot topics in software defined networks, Chicago, IL, ACM, pp 19–24Google Scholar
  11. Jia X, Wang JK (2013) Distributed firewall for p2p network in data center. In: 2013 IEEE ICCE-china workshop (ICCE-China Workshop), Shenzhen, China, pp 15–19Google Scholar
  12. Jouili S, Vansteenberghe V (2013) An empirical comparison of graph databases. In: 2013 international conference on social computing (SocialCom), Washington, DC, pp 708–715Google Scholar
  13. Khondoker R, Zaalouk A, Marx R, Bayarou K (2014) Feature-based comparison and selection of software defined networking (SDN) controllers. In: 2014 world congress on computer applications and information systems (WCCAIS), Hammamet, Tunisia, pp 1–7Google Scholar
  14. Koponen T, Casado M, Gude N, Stribling J, Poutievski L, Zhu M, Ramanathan R, Iwata Y, Inoue H, Hama T (2010) ONIX: A distributed control platform for large-scale production networks. OSDI, vol 10. Vancouver, BC, pp 1–6Google Scholar
  15. Krishnamurthy A, Chandrabose SP, Gember-Jacobson A (2014) Pratyaastha: an efficient elastic distributed sdn control plane. In: Proceedings of the third workshop on hot topics in software defined networking. Chicago, IL, ACM, pp 133–138Google Scholar
  16. Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely outsourcing attribute-based encryption with checkability. IEEE Trans Parallel Distrib Syst 25(8):2201–2210CrossRefGoogle Scholar
  17. Liu S, Li B (2015) On scaling software-defined networking in wide-area networks. Tsinghua Sci Technol 20(3):221–232CrossRefGoogle Scholar
  18. Long H, Shen Y, Guo M, Tang F (2013) Laberio: dynamic load-balanced routing in openflow-enabled networks. In: 2013 IEEE 27th international conference on advanced information networking and applications (AINA), Barcelona, Catalonia, Spain, pp 290–297Google Scholar
  19. Ma T, Zhou J, Tang M, Tian Y, Al-Dhelaan A, Al-Rodhaan M, Lee S (2015) Social network and tag sources based augmenting collaborative recommender system. IEICE Trans Inf Syst 98(4):902–910CrossRefGoogle Scholar
  20. Mckeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker S, Turner J (2008) Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev 38(2):69–74CrossRefGoogle Scholar
  21. Medved J, Varga R, Tkacik A, Gray K (2014) Opendaylight: Towards a model-driven sdn controller architecture. In: 2014 IEEE 15th international symposium on “A World of Wireless, Mobile and Multimedia Networks” (WoWMoM), Sydney, Australia, pp 1–6Google Scholar
  22. Ousterhout J, Agrawal P, Erickson D, Kozyrakis C, Leverich J, Mazires D, Mitra S, Narayanan A, Parulkar G, Rosenblum M (2010) The case for ramclouds: scalable high-performance storage entirely in dram. ACM SIGOPS Oper Syst Rev 43(4):92–105CrossRefGoogle Scholar
  23. Qazi ZA, Lee J, Jin T, Bellala G, Arndt M, Noubir G (2013) Application-awareness in SDN. In: ACM SIGCOMM computer communication review, vol 43, New York, NY, ACM, pp 487–488Google Scholar
  24. Quamar A, Deshpande A, Lin J (2014) Nscale: neighborhood-centric analytics on large graphs. Proc VLDB Endow 7(13):1673–1676CrossRefGoogle Scholar
  25. Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing protocol providing good transmission reliability in underwater sensor networks. J Internet Technol 16(1):171–178Google Scholar
  26. Subedi TN, Nguyen KK, Cheriet M (2015) Openflow-based in-network layer-2 adaptive multipath aggregation in data centers. Comput Commun 61:58–69CrossRefGoogle Scholar
  27. Tavakoli A, Casado M, Koponen T, Shenker S (2009) Applying nox to the datacenter. In: Hot topics in networks workshop, New York, NYGoogle Scholar
  28. Tootoonchian A, Ganjali Y (2010) Hyperflow: a distributed control plane for openflow. In: Proceedings of the 2010 internet network management conference on research on enterprise networking, Berkeley, CA. USENIX Association, pp 3–3Google Scholar
  29. Wang G Tang J (2012) The nosql principles and basic application of cassandra model. In: 2012 international conference on computer science and service system (CSSS), Nanjing, China, pp 1332–1335Google Scholar
  30. Wang R, Butnariu D, Rexford J (2011) Openflow-based server load balancing gone wild. Hot-ICE 11:12Google Scholar
  31. Xiao Z, Li Y, Wang J (2015) Allocation of network error correction flow on disjoint paths. Tsinghua Sci Technol 20(2):182–187MathSciNetCrossRefGoogle Scholar
  32. Xie S, Wang Y (2014) Construction of tree network with limited delivery latency in homogeneous wireless sensor networks. Wireless Pers Commun 78(78):231–246CrossRefGoogle Scholar
  33. Zheng Y, Jeon B, Xu D, Wu Q, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy c-means algorithm. J Intell Fuzzy Syst 28(2):961–973Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tao Fu
    • 1
  • Liang Hu
    • 1
  • Xiaodi Yu
    • 1
  • Jiejun Hu
    • 1
  • Kuo Zhao
    • 1
  1. 1.College of Computer Science and TechnologyJilin UniversityChangchunChina

Personalised recommendations