Soft Computing

, Volume 21, Issue 20, pp 6175–6182 | Cite as

Estimation of average surface energies of transition metal nitrides using computational intelligence technique

  • Taoreed Olakunle Owolabi
  • Kabiru Oluwaseun Akande
  • Sunday Olusanya Olatunji
Methodologies and Application


Several properties of transition metal nitrides (TMN) that make them useful in many applications are closely related to the state of their surfaces. Meanwhile, high melting points which characterize these materials make the determination of their surface energies experimentally difficult. This work presents a computational intelligence technique using support vector regression (SVR) to establish, for the first time, a complete database of average surface energies of all members of TMN series. SVR-based model was developed by training and testing SVR with best parameters obtained through test-set–cross-validation technique using thirty-five experimental data of periodic metals. The developed SVR-based model was used to estimate average surface energies of 3d, 4d and 5d-TMN, and the obtained results agree well with the existing theoretical values. Simple and effective computational approach of the developed model together with its accurate estimation of average surface energies of all the members of TMN series contributes to the uniqueness of this developed model over the existing theoretical methods.


Transition metal nitrides Support vector regression  Surface energy and descriptors 



We appreciate the reviewers of this manuscript for their constructive comments and suggestions that have improved the content of this manuscript considerably.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. Abajingin DD (2012) Solution of morse potential for face centre cube using embedded atom method. Adv. Phys. Theor. Appl. 8:36–45Google Scholar
  2. Adewumi AA, Owolabi TO, Alade IO, Olatunji SO (2016) Estimation of physical, mechanical and hydrological properties of permeable concrete using computational intelligence approach. Appl. Soft Comput. J. 2015:1–9Google Scholar
  3. Aghemenloh E, Idiodi JOA, Azi SO (2009) Surface energies of hcp metals using equivalent crystal theory. Comput. Mater. Sci 46(2):524–530CrossRefGoogle Scholar
  4. Aghemenloh E, Umukoro JO, Azi SO, Yusuf S, Idiodi J O a (2011) Surface energy calculation of bcc metals using the analytical equivalent crystal theory method. Comput. Mater. Sci. 50(12):3290–3296CrossRefGoogle Scholar
  5. Akande KO, Owolabi TO, Olatunji SO (2015) Investigating the effect of correlation-based feature selection on the performance of support vector machines in reservoir characterization. J. Nat. Gas Sci. Eng. 22:515–522CrossRefGoogle Scholar
  6. Basak D, Pal S, Partababis DC (2007) Support vector regression. Neural Inf. Process. 11:203–224Google Scholar
  7. Cai CZ, Wang GL, Wen YF, Pei JF, Zhu XJ, Zhuang WP (2010) Superconducting transition temperature T\(_{\rm c}\) estimation for superconductors of the doped MgB\(_2\) system using topological index via support vector regression. J. Supercond. Nov. Magn. 23(5):745–748CrossRefGoogle Scholar
  8. Cai CZ, Xiao TT, Tang JL, Huang SJ (2013) Analysis of process parameters in the laser deposition of YBa\(_2\)Cu\(_3\)O\(_7\) superconducting films by using SVR. Phys. C Supercond. 493:100–103CrossRefGoogle Scholar
  9. Fishman M, Zhuang HL, Mathew K, Dirschka W, Hennig RG (2013) Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper. Phys. Rev. B 87(24):245402CrossRefGoogle Scholar
  10. Fu B-Q, Liu W, Li Z-L (2009) Calculation of the surface energy of hcp-metals with the empirical electron theory. Appl. Surf. Sci. 255(23):9348–9357CrossRefGoogle Scholar
  11. Guillermet F (1991) Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. Phys. Rev. B 43(18):400–408Google Scholar
  12. Guillermet AF (1993) cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure. Phys. Rev. B 48(16):11673CrossRefGoogle Scholar
  13. Guillermet AF, Grimvall G (1992) Cohesive properties and vibrational entropy of 3d-transition metal carbide. J. Phys. Chem. Solids 53(1):105–125CrossRefGoogle Scholar
  14. Gupta SM (2007) Support vector machines based modelling of concrete strength. World Acad. Sci. Eng. Technol. 36:305–311Google Scholar
  15. Hennig D, Methfessel M, Scheffler M (1992) Trends of surface relaxations, surface energies and work functions of the 4d transition metals. Phys. Rev. B 46(8):4816–4829CrossRefGoogle Scholar
  16. Igarashi VVM, Khantha M (1991) N-body interatomic potentials for hexagonal packed metal. Philos. Mag. part B 63(3):1–10Google Scholar
  17. Kittel C (1976) Introduction to solid state physics. Wiley, p 20Google Scholar
  18. Korir KK, Amolo GO, Makau NW, Joubert DP (2011) First-principle calculations of the bulk properties of 4d transition metal carbides and nitrides in the rocksalt, zincblende and wurtzite structures. Diam. Relat. Mater. 20(2):157–164CrossRefGoogle Scholar
  19. Kulkarni SR, Harman G (2011) Statistical learning theory: a tutorial. WIREs Comput Stat 3:543–556CrossRefGoogle Scholar
  20. Liu W, Liu X, Zheng WT, Jiang Q (2006) Surface energies of several ceramics with NaCl structure. Surf. Sci. 600:257–264CrossRefGoogle Scholar
  21. Majid A, Khan A, Javed G, Mirza AM (2010) Lattice constant prediction of cubic and monoclinic perovskites using neural networks and support vector regression. Comput. Mater. Sci. 50(2):363–372CrossRefGoogle Scholar
  22. Mansfield M, Needs RJ (1991) Surface energy and stress of lead (111) and (110) surfaces. Phys. Rev. B 43(11):8829–8833CrossRefGoogle Scholar
  23. Ni AK, de Boer FR, Boom R, Mattens WCM, Miedema AR (1988) Cohesion in metals. North-Holland, AmsterdamGoogle Scholar
  24. Owolabi TO, Akande KO, Olatunji SO (2014) Estimation of superconducting transition temperature T\(_{\rm C}\) for superconductors of the doped MgB\(_2\) system from the crystal lattice parameters using support vector regression. J. Supercond. Nov. Magn. 28:75–81CrossRefGoogle Scholar
  25. Owolabi TO, Akande KO, Sunday OO (2015a) Modeling of average surface energy estimator using computational intelligence technique. Multidiscip. Model. Mater. Struct. 11(2):284–296CrossRefGoogle Scholar
  26. Owolabi TO, Akande KO, Olatunji SO (2015b) Estimation of surface energies of hexagonal close packed metals using computational intelligence technique. Appl. Soft Comput. 31:360–368CrossRefGoogle Scholar
  27. Owolabi TO, Akande KO, Olatunji SO (2015c) Development and validation of surface energies estimator (SEE) using computational intelligence technique. Comput. Mater. Sci. 101:143–151CrossRefGoogle Scholar
  28. Owolabi TO, Akande KO, Olatunji SO (2016) Application of computational intelligence technique for estimating superconducting transition temperature of YBCO superconductors. Appl. Soft Comput. 43:143–149CrossRefGoogle Scholar
  29. Sai Gautam G, Hari Kumar KC (2014) Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: a first principles study. J. Alloys Compd. 587:380–386CrossRefGoogle Scholar
  30. Savino EJ (1992) Embedded-atom-method interatomic potentials for hcp metals. Phys. Rev. B 45(22):704–710Google Scholar
  31. Swaddiwudhipong S, Tho KK, Liu ZS, Hua J, Ooi NSB (2005) Material characterization via least squares support vector machines. Model. Simul. Mater. Sci. Eng. 13(6):993–1004CrossRefGoogle Scholar
  32. Vapnik V (1995) The nature of statistical learning theory. Springer, BerlinCrossRefzbMATHGoogle Scholar
  33. Wen Y-N, Zhang J-M (2007) Surface energy calculation of the fcc metals by using the MAEAM. Solid State Commun. 144(3–4):163–167CrossRefGoogle Scholar
  34. Zhang J-M, Wang D-D, Xu K-W (2006) Calculation of the surface energy of hcp metals by using the modified embedded atom method. Appl. Surf. Sci. 253(4):2018–2024CrossRefGoogle Scholar
  35. Zhang H, Zhang Y, Dai D, Cao M, Shen W (2015) Modelling and optimization of the superconducting transition temperature. Mater. Des. 92(2016):371–377Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Taoreed Olakunle Owolabi
    • 1
    • 4
  • Kabiru Oluwaseun Akande
    • 2
  • Sunday Olusanya Olatunji
    • 3
  1. 1.Physics DepartmentKing Fahd University of Petroleum and MineralsDhahranKingdom of Saudi Arabia
  2. 2.Institute for Digital Communications, School of EngineeringUniversity of EdinburghEdinburghUK
  3. 3.Computer Science DepartmentUniversity of DammamDammamKingdom of Saudi Arabia
  4. 4.Physics and Electronics DepartmentAdekunle Ajasin UniversityAkungba-AkokoNigeria

Personalised recommendations