Soft Computing

, Volume 22, Issue 4, pp 1067–1083 | Cite as

Weighted restarting automata

Focus

Abstract

Restarting automata have been introduced as a formal model for the linguistic technique of analysis by reduction, which can be used to check the correctness of natural language sentences. In order to study quantitative aspects of restarting automata, we introduce the concept of a weighted restarting automaton. Such an automaton is given through a pair \((M,\omega )\), where M is a restarting automaton on some input alphabet \(\Sigma \), and \(\omega \) is a weight function that assigns an element of a given semiring S to each transition of M. Thus, \((M,\omega )\) defines a function \(f_\omega ^M:\Sigma ^*\rightarrow S\) that associates an element of S to each input word over \(\Sigma \). By looking at different semirings S and different weight functions \(\omega \), various quantitative aspects of the behavior of M can be expressed through these functions. We are interested in the syntactic and semantic properties of these functions, e.g., their growth rates and the closure properties under various operations.

Keywords

Restarting automaton Weight function Semiring  Closure property Upper bound 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they do not have any conflict of interest.

References

  1. Bollig B, Gastin P, Monmege B, Zeitoun M (2010) Pebble weighted automata and transitive closure logics. In: Abramsky S, Gavoille C, Kirchner C, Meyer auf der Heide F, Spirakis PG (eds) ICALP 2010, Part II, Lecture notes in computer science, Springer, Heidelberg, vol 6199, pp 587–598Google Scholar
  2. Book RV, Otto F (1993) String-rewriting systems. Texts and monographs in computer science. Springer, New YorkCrossRefGoogle Scholar
  3. Chatterjee K, Doyen L, Henzinger TA (2009) Probabilistic weighted automata. In: Bravetti M, Zavattaro G (eds) CONCUR 2009, Proc., Lecture Notes in Computer Science, vol 5710, Springer, Heidelberg, pp 244–258Google Scholar
  4. Dahlhaus E, Warmuth MK (1986) Membership for growing context-sensitive grammars is polynomial. J Comput Syst Sci 33:456–472MathSciNetCrossRefMATHGoogle Scholar
  5. Droste M, Götze D (2013) The support of nested weighted automata. In: Bensch S, Drewes F, Freund R, Otto F (eds) NCMA 2013, Proc., Oesterreichische Computer Gesellschaft, Wien, books@ocg.at, Band 294, pp 101–116Google Scholar
  6. Droste M, Kuich W (2009) Semirings and formal power series. In: Droste M, Kuich W, Vogler H (eds) Handbook of weighted automata, monographs in theoretical computer science. Springer, Heidelberg, pp 3–28CrossRefGoogle Scholar
  7. Droste M, Meinecke I (2011) Weighted automata and regular expressions over valuation monoids. Int J Found Comput Sci 22:1829–1844MathSciNetCrossRefMATHGoogle Scholar
  8. Droste M, Kuich W, Vogler H (2009) Handbook of weighted automata. Monographs in theoretical computer science. Springer, HeidelbergCrossRefMATHGoogle Scholar
  9. Golan JS (1999) Semirings and their applications. Kluwer Academic Publishers, DordrechtCrossRefMATHGoogle Scholar
  10. Hebisch U, Weinert HJ (1998) Semirings: algebraic theory and applications in computer science. World Scientific, SingaporeCrossRefMATHGoogle Scholar
  11. Hundeshagen N (2013) Relations and transductions realized by restarting automata. Doctoral thesis, Universität KasselGoogle Scholar
  12. Hundeshagen N, Otto F (2012) Characterizing the rational functions by restarting transducers. In: Dediu AH, Martín-Vide C (eds) LATA 2012, Proc., Lecture notes in computer science, vol 7183. Springer, Heidelberg, pp 325–336Google Scholar
  13. Jančar P, Mráz F, Plátek M, Vogel J (1995) Restarting automata. In: Reichel H (ed) FCT, Lecture notes in computer science, vol 965. Springer, Heidelberg, pp 283–292Google Scholar
  14. Jančar P, Mráz F, Plátek M, Vogel J (1997) On restarting automata with rewriting. In: Pǎun G, Salomaa A (eds) New trends in formal languages, Lecture notes in computer science, vol 1218. Springer, Heidelberg, pp 119–136Google Scholar
  15. Jančar P, Mráz F, Plátek M, Vogel J (1998) Different types of monotonicity for restarting automata. In: Arvind V, Ramanujam S (eds) Foundations of software technology and theoretical computer science, Lecture notes in computer science, vol 1530. Springer, Heidelberg, pp 343–354Google Scholar
  16. Jančar P, Mráz F, Plátek M, Vogel J (1999) On monotonic automata with a restart operation. J Autom Lang Comb 4(4):287–311MathSciNetMATHGoogle Scholar
  17. Jurdziński T, Loryś K, Niemann G, Otto F (2004) Some results on RWW- and RRWW-automata and their relation to the class of growing context-sensitive languages. J Autom Lang Comb 9(4):407–437MathSciNetMATHGoogle Scholar
  18. Kirsten D (2009) The support of a recognizable series over a zero-sum free, commutative semiring is recognizable. In: Diekert V, Nowotka D (eds) DLT 2009, Lecture Notes in Computer Science, vol 5583. Springer, Heidelberg, pp 326–333Google Scholar
  19. Kirsten D (2011) The support of a recognizable series over a zero-sum free, commutative semiring is recognizable. Acta Cybern 20:211–221MathSciNetCrossRefMATHGoogle Scholar
  20. McNaughton R, Narendran P, Otto F (1988) Church–Rosser Thue systems and formal languages. J ACM 35(2):324–344MathSciNetCrossRefMATHGoogle Scholar
  21. Niemann G, Otto F (2000) Restarting automata, Church–Rosser languages, and representations of r.e. languages. In: Rozenberg G, Thomas W (eds) Developments in Language Theory—Foundations, Applications, and Perspectives, DLT 1999, Proc., World Scientific, Singapore, pp 103–114Google Scholar
  22. Otto F (2006) Restarting automata. In: Ésik Z, Martín-Vide C, Mitrana V (eds) Recent advances in formal languages and applications, studies in computational intelligence, vol 25. Springer, Heidelberg, pp 269–303Google Scholar
  23. Salomaa A, Soittola M (1978) Automata-theoretic aspects of formal power series. Texts and monographs in computer science. Springer, New YorkCrossRefMATHGoogle Scholar
  24. Schützenberger MP (1961) On the definition of a family of automata. Inform Control 4(2–3):245–270MathSciNetCrossRefMATHGoogle Scholar
  25. Straňáková M (2000) Selected types of pg-ambiguity: processing based on analysis by reduction. In: Sojka P, Kopeček I, Pala K (eds) Text, speech and dialogue, Lecture notes in computer science, vol 1902. Springer, Heidelberg, pp 139–144Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Fachbereich Elektrotechnik/InformatikUniversität KasselKasselGermany

Personalised recommendations